Do you want to publish a course? Click here

Discovery of Thermonuclear Type-I X-ray Bursts from the X-ray binary MAXI J1807+132

77   0   0.0 ( 0 )
 Added by Arianna C. Albayati
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

MAXI J1807+132 is a low-mass X-ray binary (LMXB) first detected in outburst in 2017. Observations during the 2017 outburst did not allow for an unambiguous identification of the nature of the compact object. MAXI J1807+132 was detected in outburst again in 2019 and was monitored regularly with NICER. In this paper we report on five days of observations during which we detected three thermonuclear (Type-I) X-ray bursts, identifying the system as a neutron star LMXB. Time-resolved spectroscopy of the three Type-I bursts revealed typical characteristics expected for these phenomena. All three Type-I bursts show slow rises and long decays, indicative of mixed H/He fuel. We find no strong evidence that any of the Type-I bursts reached the Eddington Luminosity; however, under the assumption that the brightest X-ray burst underwent photospheric radius expansion, we estimate a <12.4kpc upper limit for the distance. We searched for burst oscillations during the Type-I bursts from MAXI J1807+132 and found none (<10% amplitude upper limit at 95% confidence level). Finally, we found that the brightest Type-I burst shows a ~1.6sec pause during the rise. This pause is similar to one recently found with NICER in a bright Type-I burst from the accreting millisecond X-ray pulsar SAX J1808.4-3658. The fact that Type-I bursts from both sources can show this type of pause suggests that the origin of the pauses is independent of the composition of the burning fuel, the peak luminosity of the Type-I bursts, or whether the NS is an X-ray pulsar.

rate research

Read More

We report on the detection and follow-up multi-wavelength observations of the new X-ray transient MAXI J1807+132 with the MAXI/GSC, Swift, and ground-based optical telescopes. The source was first recognized with the MAXI/GSC on 2017 March 13. About a week later, it reached the maximum intensity ($sim$10 mCrab in 2-10 keV), and then gradually faded in $sim$10 days by more than one order of magnitude. Time-averaged Swift/XRT spectra in the decaying phase can be described by a blackbody with a relatively low temperature (0.1-0.5 keV), plus a hard power-law component with a photon index of $sim$2. These spectral properties are similar to those of neutron star low-mass X-ray binaries (LMXBs) in their dim periods. The blackbody temperature and the radius of the emission region varied in a complex manner as the source became dimmer. The source was detected in the optical wavelength on March 27-31 as well. The optical flux decreased monotonically as the X-ray flux decayed. The correlation between the X-ray and optical fluxes is found to be consistent with those of known neutron star LMXBs, supporting the idea that the source is likely to be a transient neutron star LMXB.
Swift J1858.6-0814 is a recently discovered X-ray binary notable for extremely strong variability (by factors $>100$ in soft X-rays) in its discovery state. We present the detection of five thermonuclear (Type I) X-ray bursts from Swift J1858.6-0814, implying that the compact object in the system is a neutron star. Some of the bursts show photospheric radius expansion, so their peak flux can be used to estimate the distance to the system. The peak luminosity, and hence distance, can depend on several system parameters; for the most likely values, a high inclination and a helium atmosphere, $D=12.8_{-0.6}^{+0.8}$ kpc, although systematic effects allow a conservative range of $9-18$ kpc. Before one burst, we detect a QPO at $9.6pm0.5$ mHz with a fractional rms amplitude of $2.2pm0.2$% ($0.5-10$ keV), likely due to marginally stable burning of helium; similar oscillations may be present before the other bursts but the light curves are not long enough to allow their detection. We also search for burst oscillations but do not detect any, with an upper limit in the best case of 15% fractional amplitude (over $1-8$ keV). Finally, we discuss the implications of the neutron star accretor and this distance on other inferences which have been made about the system. In particular, we find that Swift J1858.6-0814 was observed at super-Eddington luminosities at least during bright flares during the variable stage of its outburst.
Many distinct classes of high-energy variability have been observed in astrophysical sources, on a range of timescales. The widest range (spanning microseconds-decades) is found in accreting, stellar-mass compact objects, including neutron stars and black holes. Neutron stars are of particular observational interest, as they exhibit surface effects giving rise to phenomena (thermonuclear bursts and pulsations) not seen in black holes. Here we briefly review the present understanding of thermonuclear (type-I) X-ray bursts. These events are powered by an extensive chain of nuclear reactions, which are in many cases unique to these environments. Thermonuclear bursts have been exploited over the last few years as an avenue to measure the neutron star mass and radius, although the contribution of systematic errors to these measurements remains contentious. We describe recent efforts to better match burst models to observations, with a view to resolving some of the astrophysical uncertainties related to these events. These efforts have good prospects for providing complementary information to nuclear experiments.
Type-I X-ray bursts arise from unstable thermonuclear burning of accreted fuel on the surface of neutron stars. In this chapter we review the fundamental physics of the burning processes, and summarise the observational, numerical, and nuclear experimental progress over the preceding decade. We describe the current understanding of the conditions that lead to burst ignition, and the influence of the burst fuel on the observational characteristics. We provide an overview of the processes which shape the burst X-ray spectrum, including the observationally elusive discrete spectral features. We report on the studies of timing behaviour related to nuclear burning, including burst oscillations and mHz quasi-periodic oscillations. We describe the increasing role of nuclear experimental physics in the interpretation of astrophysical data and models. We survey the simulation projects that have taken place to date, and chart the increasing dialogue between modellers, observers, and nuclear experimentalists. Finally, we identify some open problems with prospects of a resolution within the timescale of the next such review.
355 - S. Migliari 2003
We report the discovery of type-I X-ray bursts from the low-mass X-ray binary 4U 1708-40 during the 100 ks observation performed by BeppoSAX on 1999 August 15-16. Six X-ray bursts have been observed. The unabsorbed 2-10 keV fluxes of the bursts range from ~ (3-9)x10^(-10) erg cm^(-2)s^(-1). A correlation between peak flux and fluence of the bursts is found, in agreement with the behaviour observed in other similar sources. There is a trend of the burst flux to increase with the time interval from the previous burst. From the value of the persistent flux we infer a mass accretion rate Mdot~7x10^(-11) Msun/yr, that may correspond to the mixed hydrogen/helium burning regime triggered by thermally unstable hydrogen. We have also analysed a BeppoSAX observation performed on 2001 August 22 and previous RXTE observations of 4U 1708-40, where no bursts have been observed; we found persistent fluxes of more than a factor of 7 higher than the persistent flux observed during the BeppoSAX observation showing X-ray bursts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا