Tunneling spectroscopy reveals evidence for interlayer electron-hole correlations in quantum Hall bilayer two-dimensional electron systems at layer separations near, but above, the transition to the incompressible exciton condensate at total Landau level filling $ u_T=1$. These correlations are manifested by a non-linear suppression of the Coulomb pseudogap which inhibits low energy interlayer tunneling in weakly-coupled bilayers. The pseudogap suppression is strongest at $ u_T=1$ and grows rapidly as the critical layer separation for exciton condensation is approached from above.
The condensation of excitons, bound electron-hole pairs in a solid, into a coherent collective electronic state was predicted over 50 years ago. Perhaps surprisingly, the phenomenon was first observed in a system consisting of two closely-spaced parallel two-dimensional electron gases in a semiconductor double quantum well. At an appropriate high magnetic field and low temperature, the bilayer electron system condenses into a state resembling a superconductor, only with the Cooper pairs replaced by excitons comprised of electrons in one layer bound to holes in the other. In spite of being charge neutral, the transport of excitons within the condensate gives rise to several spectacular electrical effects. This article describes these phenomena and examines how they inform our understanding of this unique phase of quantum electronic matter.
Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circuit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, bilayer two-dimensional electron systems can support an exciton condensate consisting of electrons in one layer tightly bound to holes in the other. One thus expects perfect drag; a transport current of electrons driven through one layer is accompanied by an equal one of holes in the other. (The electrical currents are therefore opposite in sign.) Here we demonstrate just this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunneling of charge between the layers is negligible.
Magneto-transport and drag measurements on a quasi-Corbino 2D electron bilayer at the systems total filling factor 1 (v_tot=1) reveal a drag voltage that is equal in magnitude to the drive voltage as soon as the two layers begin to form the expected v_tot=1 exciton condensate. The identity of both voltages remains present even at elevated temperatures of 0.25 K. The conductance in the current carrying layer vanishes only in the limit of strong coupling between the two layers and at T->0 K which suggests the presence of an excitonic circular current.
We study the two-dimensional spatially separated electron-hole system with density imbalance at absolute zero temperature. By means of the mean-field theory, we find that the Fulde-Ferrell state is fairly stabilized by the order parameter mixing effect.
We present a computer simulation of exciton-exciton scattering in a quantum well. Specifically, we use quantum Monte Carlo techniques to study the bound and continuum states of two excitons in a 10 nm wide GaAs/Al$_{0.3}$Ga$_{0.7}$As quantum well. From these bound and continuum states we extract the momentum-dependent phase shifts for s-wave scattering. A surprising finding of this work is that a commonly studied effective-mass mode for excitons in a 10 nm quantum well actually supports two bound biexciton states. The second, weakly bound state may dramatically enhance exciton-exciton interactions. We also fit our results to a hard-disk model and indicate directions for future work.