No Arabic abstract
We consider the relative entropy between the vacuum state and a state obtained by applying an exponentiated stress tensor to the vacuum of a chiral conformal field theory on the lightray. The smearing function of the stress tensor can be viewed as a vector field on the real line generating a diffeomorphism. We show that the relative entropy is equal to $c$ times the so-called Schwarzian action of the diffeomorphism. As an application of this result, we obtain a formula for the relative entropy between the vacuum and a solitonic state.
We show that the relative entropy between the reduced density matrix of the vacuum state in some region $A$ and that of an excited state created by a unitary operator localized at a small distance $ell$ of a boundary point $p$ is insensitive to the global shape of $A$, up to a small correction. This correction tends to zero as $ell/R$ tends to zero, where $R$ is a measure of the curvature of $partial A$ at $p$, but at a rate necessarily slower than $sim sqrt{ell/R}$ (in any dimension). Our arguments are mathematically rigorous and only use model-independent, basic assumptions about quantum field theory such as locality and Poincare invariance.
We parametrize the (2+1)-dimensional AdS space and the BTZ black hole with Fefferman-Graham coordinates starting from the AdS boundary. We consider various boundary metrics: Rindler, static de Sitter and FRW. In each case, we compute the holographic stress-energy tensor of the dual CFT and confirm that it has the correct form, including the effects of the conformal anomaly. We find that the Fefferman-Graham parametrization also spans a second copy of the AdS space, including a second boundary. For the boundary metrics we consider, the Fefferman-Graham coordinates do not cover the whole AdS space. We propose that the length of the line delimiting the excluded region at a given time can be identified with the entropy of the dual CFT on a background determined by the boundary metric. For Rindler and de Sitter backgrounds our proposal reproduces the expected entropy. For a FRW background it produces a generalization of the Cardy formula that takes into account the vacuum energy related to the expansion.
We propose a new non-holographic formulation of AdS/CFT correspondence, according to which quantum gravity on AdS and its dual non-gravitational field theory both live in the same number D of dimensions. The field theory, however, appears (D-1)-dimensional because the interactions do not propagate in one of the dimensions. The D-dimensional action for the field theory can be identified with the sum over (D-1)-dimensional actions with all possible values $Lambda$ of the UV cutoff, so that the extra hidden dimension can be identified with $Lambda$. Since there are no interactions in the extra dimension, most of the practical results of standard holographic AdS/CFT correspondence transcribe to non-holographic AdS/CFT without any changes. However, the implications on black-hole entropy change significantly. The maximal black-hole entropy now scales with volume, while the Bekenstein-Hawking entropy is interpreted as the minimal possible black-hole entropy. In this way, the non-holographic AdS/CFT correspondence offers a simple resolution of the black-hole information paradox, consistent with a recently proposed gravitational crystal.
Recent work has demonstrated the need to include contributions from entanglement islands when computing the entanglement entropy in QFT states coupled to regions of semiclassical gravity. We propose a new formula for the reflected entropy that includes additional contributions from such islands. We derive this formula from the gravitational path integral by finding additional saddles that include generalized replica wormholes. We also demonstrate that our covariant formula satisfies all the inequalities required of the reflected entropy. We use this formula in various examples that demonstrate its relevance in illustrating the structure of multipartite entanglement that are invisible to the entropies.
These lectures review recent developments in our understanding of the emergence of local bulk physics in AdS/CFT. The primary topics are sufficient conditions for a conformal field theory to have a semiclassical dual, bulk reconstruction, the quantum error correction interpretation of the correspondence, tensor network models of holography, and the quantum Ryu-Takayanagi formula.