No Arabic abstract
Near-field imaging with terahertz (THz) waves is emerging as a powerful technique for fundamental research in photonics and across physical and life sciences. Spatial resolution beyond the diffraction limit can be achieved by collecting THz waves from an object through a small aperture placed in the near-field. However, light transmission through a sub-wavelength size aperture is fundamentally limited by the wave nature of light. Here, we conceive a novel architecture that exploits inherently strong evanescent THz field arising within the aperture to mitigate the problem of vanishing transmission. The sub-wavelength aperture is originally coupled to asymmetric electrodes, which activate the thermo-electric THz detection mechanism in a transistor channel made of flakes of black-phosphorus or InAs nanowires. The proposed novel THz near-field probes enable room-temperature sub-wavelength resolution coherent imaging with a 3.4 THz quantum cascade laser, paving the way to compact and versatile THz imaging systems and promising to bridge the gap in spatial resolution from the nanoscale to the diffraction limit.
Imaging applications in the terahertz (THz) frequency range are severely restricted by diffraction. Near-field scanning probe microscopy is commonly employed to enable mapping of the THz electromagnetic fields with sub-wavelength spatial resolution, allowing intriguing scientific phenomena to be explored such as charge carrier dynamics in nanostructures and THz plasmon-polaritons in novel 2D materials and devices. High-resolution THz imaging, so far, has been relying predominantly on THz detection techniques that require either an ultrafast laser or a cryogenically-cooled THz detector. Here, we demonstrate coherent near-field imaging in the THz frequency range using a room-temperature nanodetector embedded in the aperture of a near-field probe, and an interferometric optical setup driven by a THz quantum cascade laser (QCL). By performing phase-sensitive imaging of strongly confined THz fields created by plasmonic focusing we demonstrate the potential of our novel architecture for high-sensitivity coherent THz imaging with sub-wavelength spatial resolution.
Photon detection with quantum-level sensitivity is particularly challenging in the terahertz regime (0.1-10 THz), which contains ~98% of all the photons existing in the universe. Near-quantum-limited terahertz spectrometry has so far only been possible through the use of cryogenically cooled superconducting mixers as frequency downconverters. Here we introduce a spectrometry scheme that uses plasmonic photomixing for frequency downconversion to offer quantum-level sensitivities at room temperature for the first time. Frequency downconversion is achieved by mixing terahertz radiation and a heterodyning optical beam with a terahertz beat frequency in a plasmonics-enhanced semiconductor active region. We demonstrate spectrometer sensitivities down to 3 times the quantum-limit at room temperature. With a versatile design capable of broadband spectrometry, this plasmonic photomixer has broad applicability to quantum optics, chemical sensing, biological studies, medical diagnosis, high data-rate communication, as well as astronomy and atmospheric studies.
Terahertz subwavelength imaging aims at developing THz microscopes able to resolve deeply subwavelength features. To improve the spatial resolution beyond the diffraction limit, a current trend is to use various subwavelength probes to convert the near-field to the far-field. These techniques, while offering significant gains in spatial resolution, inherently lack the ability to rapidly obtain THz images due to the necessity of slow pixel-by-pixel raster scan and often suffer from low light throughput. In parallel, in the visible spectral range, several super-resolution imaging techniques were developed that enhance the image resolution by recording and statistically correlating multiple images of an object backlit with light from stochastically blinking fluorophores. Inspired by this methodology, we develop a Super-resolution Orthogonal Deterministic Imaging (SODI) technique and apply it in the THz range. Since there are no natural THz fluorophores, we use optimally designed mask sets brought in proximity with the object as artificial fluorophores. Because we directly control the form of the masks, rather than relying on statistical averages, we aim at employing the smallest possible number of frames. After developing the theoretical basis of SODI, we demonstrate the second-order resolution improvement experimentally using phase masks and binary amplitude masks with only 8 frames. We then numerically show how to extend the SODI technique to higher orders to further improve the resolution. As our formulation is based on the equation of linear imaging and it uses spatial modulation of either the phase or the amplitude of the THz wave, our methodology can be readily adapted for the use with existing phase-sensitive single pixel imaging systems or any amplitude sensitive THz imaging arrays.
In this work, we present an in-depth experimental and numerical study of the short-range THz communications links that use subwavelength dielectric fibers for information transmission and define main challenges and tradeoffs in the link implementation. Particularly, we use air or foam-cladded polypropylene-core subwavelength dielectric THz fibers of various diameters (0.57-1.75 mm) to study link performance as a function of the link length of up to ~10 m, and data bitrates of up to 6 Gbps at the carrier frequency of 128 GHz (2.34 mm wavelength). We find that depending on the fiber diameter, the quality of the transmitted signal is mostly limited either by the modal propagation loss or by the fiber velocity dispersion (GVD). An error-free transmission over 10 meters is achieved for the bit rate of 4 Gbps using the fiber of smaller 0.57 mm diameter. Furthermore, since the fields of subwavelength fibers are weakly confined and extend deep into the air cladding, we study the modal field extent outside of the fiber core, as well as fiber bending loss. Finally, the power budget of the rod-in-air subwavelength THz fiber-based links is compared to that of free space communication links and we demonstrate that fiber links offer an excellent solution for various short-range applications.
Uncooled Terahertz (THz) photodetectors (PDs) showing fast (ps) response and high sensitivity (noise equivalent power (NEP) < $nWHz^{-1/2}$) over a broad (0.5THz-10THz) frequency range are needed for applications in high-resolution spectroscopy (relative accuracy ~ $10^{-11}$), metrology, quantum information, security, imaging, optical communications. However, present THz receivers cannot provide the required balance between sensitivity, speed, operation temperature and frequency range. Here, we demonstrate an uncooled THz PD combining the low (~2000 $k_{B}{mu}m^{-2}$) electronic specific heat of high mobility (> 50000 $cm^{2}V^{-1}s^{-1}$) hBN-encapsulated graphene with the asymmetric field-enhancement produced by a bow-tie antenna resonating at 3 THz. This produces a strong photo-thermoelectric conversion, which simultaneously leads to a combination of high sensitivity (NEP $leq$ 160 $pWHz^{-1/2}$), fast response time ($leq 3.3 ns$) and a four orders of magnitude dynamic range, making our devices the fastest, broadband, low noise, room temperature THz PD to date.