No Arabic abstract
The EUV (100-912 {AA}) is a spectral region notoriously difficult to observe due to attenuation by neutral hydrogen gas in the interstellar medium. Despite this, hundreds to thousands of nearby stars of different spectral types and magnetic activity levels are accessible in the EUV range. The EUV probes interesting and complicated regions in the stellar atmosphere like the lower corona and transition region that are inaccessible from other spectral regions. In this white paper we describe how direct EUV observations, which require a dedicated grazing-incidence observatory, cannot yet be accurately substituted with models and theory. Exploring EUV emission from cool dwarf stars in the time domain can make a major contribution to understanding stellar outer atmospheres and magnetism, and offers the clearest path toward detecting coronal mass ejections on stars other than the Sun.
We present results from a near infrared survey of the He I line (10830 Angstrom) in cool dwarf stars taken with the PHOENIX spectrograph at the 4-m Mayall telescope at Kitt Peak National Observatory. Spectral synthesis of this region reproduces some but not all atomic and molecular features. The equivalent width of the He line appears directly correlated with the soft X-ray stellar surface flux except among the coolest M dwarf stars, where the helium is surprisingly weak.
Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the ideal-gas-based description of absorption is no longer adequate, which makes the opacities of these atmospheres difficult to model. This is illustrated with severe problems in fitting the spectra of cool, He-rich stars. Good description of the infrared (IR) opacity is essential for proper assignment of the atmospheric parameters of these stars. Using methods of computational quantum chemistry we simulate the IR absorption of dense He/H media. We found a significant IR absorption from He atoms (He-He-He CIA opacity) and a strong pressure distortion of the H$_2$-He collision-induced absorption (CIA). We discuss the implication of these results for interpretation of the spectra of cool stars.
Kowalski & Saumon (2006) identified the missing absorption mechanism in the observed spectra of cool white dwarf stars as the Ly-alpha red wing formed by the collisions between atomic and molecular hydrogen and successfully explained entire spectra of many cool DA-type white dwarfs. Owing to the important astrophysical implications of this issue, we present here an independent assessment of the process. For this purpose, we compute free-free quasi-molecular absorption in Lyman-alpha due to collisions with H and H2 within the one-perturber, quasi-static approximation. Line cross-sections are obtained using theoretical molecular potentials to describe the interaction between the radiating atom and the perturber. The variation of the electric-dipole transition moment with the interparticle distance is also considered. Six and two allowed electric dipole transitions due to H-H and H-H2 collisions, respectively, are taken into account. The new theoretical Lyman-alpha line profiles are then incorporated in our stellar atmosphere program for the computation of synthetic spectra and colours of DA-type white dwarfs. Illustrative model atmospheres and spectral energy distributions are computed, which show that Ly-alpha broadening by atoms and molecules has a significant effect on the white dwarf atmosphere models. The inclusion of this collision-induced opacity significantly reddens spectral energy distributions and affects the broadband colour indices for model atmospheres with Teff<5000 K. These results confirm those previously obtained by Kowalski & Saumon (2006). Our study points out the need for reliable evaluations of H3 potential energy surfaces covering a large region of nuclear configurations, in order to obtain a better description of H-H2 collisions and a more accurate evaluation of their influence on the spectrum of cool white dwarfs.
We present new Hubble Space Telescope (HST) ultraviolet and ground-based optical observations of the hot, metal-rich white dwarf GD 394. Extreme-ultraviolet (EUV) observations in 1992-1996 revealed a 1.15d periodicity with a 25 percent amplitude, hypothesised to be due to metals in a surface accretion spot. We obtained phase-resolved HST/Space Telescope Imaging Spectrograph (STIS) high-resolution far-ultraviolet (FUV) spectra of GD 394 that sample the entire period, along with a large body of supplementary data. We find no evidence for an accretion spot, with the flux, accretion rate and radial velocity of GD 394 constant over the observed timescales at ultraviolet and optical wavelengths. We speculate that the spot may have no longer been present when our observations were obtained, or that the EUV variability is being caused by an otherwise undetected evaporating planet. The atmospheric parameters obtained from separate fits to optical and ultraviolet spectra are inconsistent, as is found for multiple hot white dwarfs. We also detect non-photospheric, high-excitation absorption lines of multiple volatile elements, which could be evidence for a hot plasma cocoon surrounding the white dwarf.
The recent years have brought great advances in our knowledge of magnetic fields in cool giant and supergiant stars. For example, starspots have been directly imaged on the surface of an active giant star using optical interferometry, and magnetic fields have been detected in numerous slowly rotating giants and even on supergiants. Here, I review what is currently known of the magnetism in cool giant and supergiant stars, and discuss the origin of these fields and what is theoretically known about them.