Do you want to publish a course? Click here

Lyman-alpha wing absorption in cool white dwarf stars

154   0   0.0 ( 0 )
 Added by Rene D. Rohrmann
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kowalski & Saumon (2006) identified the missing absorption mechanism in the observed spectra of cool white dwarf stars as the Ly-alpha red wing formed by the collisions between atomic and molecular hydrogen and successfully explained entire spectra of many cool DA-type white dwarfs. Owing to the important astrophysical implications of this issue, we present here an independent assessment of the process. For this purpose, we compute free-free quasi-molecular absorption in Lyman-alpha due to collisions with H and H2 within the one-perturber, quasi-static approximation. Line cross-sections are obtained using theoretical molecular potentials to describe the interaction between the radiating atom and the perturber. The variation of the electric-dipole transition moment with the interparticle distance is also considered. Six and two allowed electric dipole transitions due to H-H and H-H2 collisions, respectively, are taken into account. The new theoretical Lyman-alpha line profiles are then incorporated in our stellar atmosphere program for the computation of synthetic spectra and colours of DA-type white dwarfs. Illustrative model atmospheres and spectral energy distributions are computed, which show that Ly-alpha broadening by atoms and molecules has a significant effect on the white dwarf atmosphere models. The inclusion of this collision-induced opacity significantly reddens spectral energy distributions and affects the broadband colour indices for model atmospheres with Teff<5000 K. These results confirm those previously obtained by Kowalski & Saumon (2006). Our study points out the need for reliable evaluations of H3 potential energy surfaces covering a large region of nuclear configurations, in order to obtain a better description of H-H2 collisions and a more accurate evaluation of their influence on the spectrum of cool white dwarfs.



rate research

Read More

109 - Piotr M. Kowalski 2016
Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the ideal-gas-based description of absorption is no longer adequate, which makes the opacities of these atmospheres difficult to model. This is illustrated with severe problems in fitting the spectra of cool, He-rich stars. Good description of the infrared (IR) opacity is essential for proper assignment of the atmospheric parameters of these stars. Using methods of computational quantum chemistry we simulate the IR absorption of dense He/H media. We found a significant IR absorption from He atoms (He-He-He CIA opacity) and a strong pressure distortion of the H$_2$-He collision-induced absorption (CIA). We discuss the implication of these results for interpretation of the spectra of cool stars.
Spectral observations below Lyman-alpha are now obtained with the Cosmic Origin Spectrograph (COS) on the Hubble Space Telescope (HST). It is therefore necessary to provide an accurate treatment of the blue wing of the Lyman-alpha line that enables correct calculations of radiative transport in DA and DBA white dwarf stars. On the theoretical front, we very recently developed very accurate H-He potential energies for the hydrogen 1s, 2s, and 2p states. Nevertheless, an uncertainty remained about the asymptotic correlation of the Sigma states and the electronic dipole transition moments. A similar difficulty occurred in our first calculations for the resonance broadening of hydrogen perturbed by collisions with neutral H atoms. The aim of this paper is twofold. First, we clarify the question of the asymptotic correlation of the Sigma states, and we show that relativistic contributions, even very tiny, may need to be accounted for a correct long-range and asymptotic description of the states because of the specific 2s 2p Coulomb degeneracy in hydrogen. This effect of relativistic corrections, inducing small splitting of the 2s and 2p states of H, is shown to be important for the Sigma-Sigma$ transition dipole moments in H-He and is also discussed in H-H. Second, we use existent (H-H) and newly determined (H-He) accurate potentials and properties to provide a theoretical investigation of the collisional effects on the blue wing of the Lyman-alpha line of H perturbed by He and H. We study the relative contributions in the blue wing of the H and He atoms according to their relative densities. We finally achieve a comparison with recent COS observations and propose an assignment for a feature centered at 1190 A.
White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.
The spectroscopic catalogue of white dwarf-main sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS) is the largest and most homogeneous sample of compact binary stars currently known. However, because of selection effects, the current sample is strongly biased against systems containing cool white dwarfs and/or early type companions, which are predicted to dominate the intrinsic population. In this study we present colour selection criteria that combines optical (ugriz DR8 SDSS) plus infrared (yjhk DR9 UKIRT Infrared Sky Survey (UKIDSS), JHK Two Micron All Sky Survey (2MASS) and/or w1w2 Wide-Field Infrared Survey Explorer (WISE)) magnitudes to select 3419 photometric candidates of harbouring cool white dwarfs and/or dominant (M dwarf) companions. We demonstrate that 84 per cent of our selected candidates are very likely genuine WDMS binaries, and that the white dwarf effective temperatures and secondary star spectral types of 71 per cent of our selected sources are expected to be below <~10000-15000K, and concentrated at ~M2-3, respectively. We also present an updated version of the spectroscopic SDSS WDMS binary catalogue, which incorporates 47 new systems from SDSS DR8. The bulk of the DR8 spectroscopy is made up of main-sequence stars and red giants that were targeted as part of the Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey, therefore the number of new spectroscopic WDMS binaries in DR8 is very small compared to previous SDSS data releases. Despite their low number, DR8 WDMS binaries are found to be dominated by systems containing cool white dwarfs and therefore represent an important addition to the spectroscopic sample. The updated SDSS DR8 spectroscopic catalogue of WDMS binaries consists of 2316 systems.
The EUV (100-912 {AA}) is a spectral region notoriously difficult to observe due to attenuation by neutral hydrogen gas in the interstellar medium. Despite this, hundreds to thousands of nearby stars of different spectral types and magnetic activity levels are accessible in the EUV range. The EUV probes interesting and complicated regions in the stellar atmosphere like the lower corona and transition region that are inaccessible from other spectral regions. In this white paper we describe how direct EUV observations, which require a dedicated grazing-incidence observatory, cannot yet be accurately substituted with models and theory. Exploring EUV emission from cool dwarf stars in the time domain can make a major contribution to understanding stellar outer atmospheres and magnetism, and offers the clearest path toward detecting coronal mass ejections on stars other than the Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا