Do you want to publish a course? Click here

High Resolution Near-Infrared Spectroscopy of Cool Dwarf Stars

69   0   0.0 ( 0 )
 Added by Andrea Dupree
 Publication date 2018
  fields Physics
and research's language is English
 Authors Andrea Dupree




Ask ChatGPT about the research

We present results from a near infrared survey of the He I line (10830 Angstrom) in cool dwarf stars taken with the PHOENIX spectrograph at the 4-m Mayall telescope at Kitt Peak National Observatory. Spectral synthesis of this region reproduces some but not all atomic and molecular features. The equivalent width of the He line appears directly correlated with the soft X-ray stellar surface flux except among the coolest M dwarf stars, where the helium is surprisingly weak.



rate research

Read More

Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us scrutinizing the velocity and magnetic fields of sunspots and their surroundings. Active region NOAA 12597 was observed on 24/09/2016 with the 1.5-m GREGOR solar telescope using high-spatial resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with LCT, whereas LOS velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the SIR code for the Si I and Ca I NIR lines. At the time of the GREGOR observations, the leading sunspot had two light-bridges indicating the onset of its decay. One of the light-bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55-degree in clockwise direction over 12 hours. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.
We aim to characterise the surface magnetic fields of a sample of 8 T Tauri stars from high-resolution near-IR spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are 1) to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, 2) to expand the sample of stars with measured surface magnetic field strengths, 3) to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and 4) to compare the magnetic field modulus <B> tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-IR K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of <B> with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25-42% for relatively simple poloidal axisymmetric field topologies to 2-11% for more complex fields.
The advent of large-scale spectroscopic surveys underscores the need to develop robust techniques for determining stellar properties (labels, i.e., physical parameters and elemental abundances). However, traditional spectroscopic methods that utilize stellar models struggle to reproduce cool ($<$4700 K) stellar atmospheres due to an abundance of unconstrained molecular transitions, making modeling via synthetic spectral libraries difficult. Because small, cool stars such as K and M dwarfs are both common and good targets for finding small, cool planets, establishing precise spectral modeling techniques for these stars is of high priority. To address this, we apply The Cannon, a data-driven method of determining stellar labels, to Keck High Resolution Echelle Spectrometer (HIRES) spectra of 141 cool ($<$5200 K) stars from the California Planet Search. Our implementation is capable of predicting labels for small ($<$1 $R_{odot}$) stars of spectral types K and later with accuracies of 68 K in effective temperature ($T_{eff}$), 5% in stellar radius ($R_{*}$), and 0.08 dex in bulk metallicity ([Fe/H]), and maintains this performance at low spectral resolutions ($R$ $<$ 5000). As M-dwarfs are the focus of many future planet-detection surveys, this work can aid efforts to better characterize the cool star population and uncover correlations between cool star abundances and planet occurrence for constraining planet formation theories.
109 - Piotr M. Kowalski 2016
Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the ideal-gas-based description of absorption is no longer adequate, which makes the opacities of these atmospheres difficult to model. This is illustrated with severe problems in fitting the spectra of cool, He-rich stars. Good description of the infrared (IR) opacity is essential for proper assignment of the atmospheric parameters of these stars. Using methods of computational quantum chemistry we simulate the IR absorption of dense He/H media. We found a significant IR absorption from He atoms (He-He-He CIA opacity) and a strong pressure distortion of the H$_2$-He collision-induced absorption (CIA). We discuss the implication of these results for interpretation of the spectra of cool stars.
The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520--1710nm at a resolution of at least $R > 80,000$, and we measure its RV, H$alpha$ emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, $Q$, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700--900nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1ms$^{-1}$ in very low mass M dwarfs at longer wavelengths likely requires the use of a 10m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4ms$^{-1}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا