Do you want to publish a course? Click here

End-To-End Speech Recognition Using A High Rank LSTM-CTC Based Model

113   0   0.0 ( 0 )
 Added by Yangyang Shi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Long Short Term Memory Connectionist Temporal Classification (LSTM-CTC) based end-to-end models are widely used in speech recognition due to its simplicity in training and efficiency in decoding. In conventional LSTM-CTC based models, a bottleneck projection matrix maps the hidden feature vectors obtained from LSTM to softmax output layer. In this paper, we propose to use a high rank projection layer to replace the projection matrix. The output from the high rank projection layer is a weighted combination of vectors that are projected from the hidden feature vectors via different projection matrices and non-linear activation function. The high rank projection layer is able to improve the expressiveness of LSTM-CTC models. The experimental results show that on Wall Street Journal (WSJ) corpus and LibriSpeech data set, the proposed method achieves 4%-6% relative word error rate (WER) reduction over the baseline CTC system. They outperform other published CTC based end-to-end (E2E) models under the condition that no external data or data augmentation is applied. Code has been made available at https://github.com/mobvoi/lstm_ctc.



rate research

Read More

Recently, there has been an increasing interest in end-to-end speech recognition that directly transcribes speech to text without any predefined alignments. One approach is the attention-based encoder-decoder framework that learns a mapping between variable-length input and output sequences in one step using a purely data-driven method. The attention model has often been shown to improve the performance over another end-to-end approach, the Connectionist Temporal Classification (CTC), mainly because it explicitly uses the history of the target character without any conditional independence assumptions. However, we observed that the performance of the attention has shown poor results in noisy condition and is hard to learn in the initial training stage with long input sequences. This is because the attention model is too flexible to predict proper alignments in such cases due to the lack of left-to-right constraints as used in CTC. This paper presents a novel method for end-to-end speech recognition to improve robustness and achieve fast convergence by using a joint CTC-attention model within the multi-task learning framework, thereby mitigating the alignment issue. An experiment on the WSJ and CHiME-4 tasks demonstrates its advantages over both the CTC and attention-based encoder-decoder baselines, showing 5.4-14.6% relative improvements in Character Error Rate (CER).
Recently, Transformer has gained success in automatic speech recognition (ASR) field. However, it is challenging to deploy a Transformer-based end-to-end (E2E) model for online speech recognition. In this paper, we propose the Transformer-based online CTC/attention E2E ASR architecture, which contains the chunk self-attention encoder (chunk-SAE) and the monotonic truncated attention (MTA) based self-attention decoder (SAD). Firstly, the chunk-SAE splits the speech into isolated chunks. To reduce the computational cost and improve the performance, we propose the state reuse chunk-SAE. Sencondly, the MTA based SAD truncates the speech features monotonically and performs attention on the truncated features. To support the online recognition, we integrate the state reuse chunk-SAE and the MTA based SAD into online CTC/attention architecture. We evaluate the proposed online models on the HKUST Mandarin ASR benchmark and achieve a 23.66% character error rate (CER) with a 320 ms latency. Our online model yields as little as 0.19% absolute CER degradation compared with the offline baseline, and achieves significant improvement over our prior work on Long Short-Term Memory (LSTM) based online E2E models.
In this paper we proposed a novel Adversarial Training (AT) approach for end-to-end speech recognition using a Criticizing Language Model (CLM). In this way the CLM and the automatic speech recognition (ASR) model can challenge and learn from each other iteratively to improve the performance. Since the CLM only takes the text as input, huge quantities of unpaired text data can be utilized in this approach within end-to-end training. Moreover, AT can be applied to any end-to-end ASR model using any deep-learning-based language modeling frameworks, and compatible with any existing end-to-end decoding method. Initial results with an example experimental setup demonstrated the proposed approach is able to gain consistent improvements efficiently from auxiliary text data under different scenarios.
Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs). Most of these systems contain separate components that deal with the acoustic modelling, language modelling and sequence decoding. We investigate a more direct approach in which the HMM is replaced with a Recurrent Neural Network (RNN) that performs sequence prediction directly at the character level. Alignment between the input features and the desired character sequence is learned automatically by an attention mechanism built into the RNN. For each predicted character, the attention mechanism scans the input sequence and chooses relevant frames. We propose two methods to speed up this operation: limiting the scan to a subset of most promising frames and pooling over time the information contained in neighboring frames, thereby reducing source sequence length. Integrating an n-gram language model into the decoding process yields recognition accuracies similar to other HMM-free RNN-based approaches.
Connectionist Temporal Classification (CTC) based end-to-end speech recognition system usually need to incorporate an external language model by using WFST-based decoding in order to achieve promising results. This is more essential to Mandarin speech recognition since it owns a special phenomenon, namely homophone, which causes a lot of substitution errors. The linguistic information introduced by language model will help to distinguish these substitution errors. In this work, we propose a transformer based spelling correction model to automatically correct errors especially the substitution errors made by CTC-based Mandarin speech recognition system. Specifically, we investigate using the recognition results generated by CTC-based systems as input and the ground-truth transcriptions as output to train a transformer with encoder-decoder architecture, which is much similar to machine translation. Results in a 20,000 hours Mandarin speech recognition task show that the proposed spelling correction model can achieve a CER of 3.41%, which results in 22.9% and 53.2% relative improvement compared to the baseline CTC-based systems decoded with and without language model respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا