Do you want to publish a course? Click here

SZ spectroscopy in the coming decade: Galaxy cluster cosmology and astrophysics in the submillimeter

263   0   0.0 ( 0 )
 Added by Kaustuv Basu
 Publication date 2019
  fields Physics
and research's language is English
 Authors Kaustuv Basu




Ask ChatGPT about the research

Sunyaev-Zeldovich (SZ) effects were first proposed in the 1970s as tools to identify the X-ray emitting hot gas inside massive clusters of galaxies and obtain their velocities relative to the cosmic microwave background (CMB). Yet it is only within the last decade that they have begun to significantly impact astronomical research. Thanks to the rapid developments in CMB instrumentation, measurement of the dominant thermal signature of the SZ effects has become a routine tool to find and characterize large samples of galaxy clusters and to seek deeper understanding of several important astrophysical processes via high-resolution imaging studies of many targets. With the notable exception of the Planck satellite and a few combinations of ground-based observatories, much of this SZ revolution has happened in the photometric mode, where observations are made at one or two frequencies in the millimeter regime to maximize the cluster detection significance and minimize the foregrounds. Still, there is much more to learn from detailed and systematic analyses of the SZ spectra across multiple wavelengths, specifically in the submillimeter (>300 GHz) domain. The goal of this Science White Paper is to highlight this particular aspect of SZ research, point out what new and potentially groundbreaking insights can be obtained from these studies, and emphasize why the coming decade can be a golden era for SZ spectral measurements.



rate research

Read More

443 - S. T. Myers 2009
We are learning much about how structure forms, in particular how clusters as nodes in the cosmic web evolve and accrete matter, and about the physical processes within these objects. In the next decade, the study of clusters will enable us to tackle important questions regarding the nature of Dark Matter and Dark Energy, how clusters co-evolve with super-massive black holes at their centers, and to advance our knowledge about fundamental plasma astrophysics. This science white paper outlines the key questions and research opportunities in cluster astrophysics that are emerging in the coming decade and beyond, and serves as an overview to other cluster related white papers.
78 - O. Dore 2019
Two decades after its discovery, cosmic acceleration remains the most profound mystery in cosmology and arguably in all of physics. Either the Universe is dominated by a form of dark energy with exotic physical properties not predicted by standard model physics, or General Relativity is not an adequate description of gravity over cosmic distances. WFIRST emerged as a top priority of Astro2010 in part because of its ability to address the mystery of cosmic acceleration through both high precision measurements of the cosmic expansion history and the growth of cosmic structures with multiple and redundant probes. We illustrate in this white paper how mission design changes since Astro2010 have made WFIRST an even more powerful dark energy facility and have improved the ability of WFIRST to respond to changes in the experimental landscape. WFIRST is the space-based probe of DE the community needs in the mid-2020s.
Some recent developments concerning the role of strange quark matter for astrophysical systems and the QCD phase transition in the early universe are addressed. Causality constraints of the soft nuclear equation of state as extracted from subthreshold kaon production in heavy-ion collisions are used to derive an upper mass limit for compact stars. The interplay between the viscosity of strange quark matter and the gravitational wave emission from rotation-powered pulsars are outlined. The flux of strange quark matter nuggets in cosmic rays is put in perspective with a detailed numerical investigation of the merger of two strange stars. Finally, we discuss a novel scenario for the QCD phase transition in the early universe, which allows for a small inflationary period due to a pronounced first order phase transition at large baryochemical potential.
Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev-Zeldovich (SZ) effect instruments. Additionally, non-thermal electrons (re-)energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma) and the farthest (El Gordo) clusters with known radio relics.
235 - F. Mayet , R. Adam , P. Ade 2019
The main limiting factor of cosmological analyses based on thermal Sunyaev-Zeldovich (SZ) cluster statistics comes from the bias and systematic uncertainties that affect the estimates of the mass of galaxy clusters. High-angular resolution SZ observations at high redshift are needed to study a potential redshift or morphology dependence of both the mean pressure profile and of the mass-observable scaling relation used in SZ cosmological analyses. The NIKA2 camera is a new generation continuum instrument installed at the IRAM 30-m telescope. With a large field of view, a high angular resolution and a high-sensitivity, the NIKA2 camera has unique SZ mapping capabilities. In this paper, we present the NIKA2 SZ large program, aiming at observing a large sample of clusters at redshifts between 0.5 and 0.9, and the characterization of the first cluster oberved with NIKA2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا