Do you want to publish a course? Click here

Galaxy Cluster Astrophysics and Cosmology: Questions and Opportunities for the Coming Decade

443   0   0.0 ( 0 )
 Added by S. T. Myers
 Publication date 2009
  fields Physics
and research's language is English
 Authors S. T. Myers




Ask ChatGPT about the research

We are learning much about how structure forms, in particular how clusters as nodes in the cosmic web evolve and accrete matter, and about the physical processes within these objects. In the next decade, the study of clusters will enable us to tackle important questions regarding the nature of Dark Matter and Dark Energy, how clusters co-evolve with super-massive black holes at their centers, and to advance our knowledge about fundamental plasma astrophysics. This science white paper outlines the key questions and research opportunities in cluster astrophysics that are emerging in the coming decade and beyond, and serves as an overview to other cluster related white papers.



rate research

Read More

262 - Kaustuv Basu 2019
Sunyaev-Zeldovich (SZ) effects were first proposed in the 1970s as tools to identify the X-ray emitting hot gas inside massive clusters of galaxies and obtain their velocities relative to the cosmic microwave background (CMB). Yet it is only within the last decade that they have begun to significantly impact astronomical research. Thanks to the rapid developments in CMB instrumentation, measurement of the dominant thermal signature of the SZ effects has become a routine tool to find and characterize large samples of galaxy clusters and to seek deeper understanding of several important astrophysical processes via high-resolution imaging studies of many targets. With the notable exception of the Planck satellite and a few combinations of ground-based observatories, much of this SZ revolution has happened in the photometric mode, where observations are made at one or two frequencies in the millimeter regime to maximize the cluster detection significance and minimize the foregrounds. Still, there is much more to learn from detailed and systematic analyses of the SZ spectra across multiple wavelengths, specifically in the submillimeter (>300 GHz) domain. The goal of this Science White Paper is to highlight this particular aspect of SZ research, point out what new and potentially groundbreaking insights can be obtained from these studies, and emphasize why the coming decade can be a golden era for SZ spectral measurements.
78 - O. Dore 2019
Two decades after its discovery, cosmic acceleration remains the most profound mystery in cosmology and arguably in all of physics. Either the Universe is dominated by a form of dark energy with exotic physical properties not predicted by standard model physics, or General Relativity is not an adequate description of gravity over cosmic distances. WFIRST emerged as a top priority of Astro2010 in part because of its ability to address the mystery of cosmic acceleration through both high precision measurements of the cosmic expansion history and the growth of cosmic structures with multiple and redundant probes. We illustrate in this white paper how mission design changes since Astro2010 have made WFIRST an even more powerful dark energy facility and have improved the ability of WFIRST to respond to changes in the experimental landscape. WFIRST is the space-based probe of DE the community needs in the mid-2020s.
We forecast astrophysical and cosmological parameter constraints from synergies between 21 cm intensity mapping and wide field optical galaxy surveys (both spectroscopic and photometric) over $z sim 0-3$. We focus on the following survey combinations in this work: (i) a CHIME-like and DESI-like survey in the northern hemisphere, (ii) an LSST-like and SKA I MID-like survey and (ii) a MeerKAT-like and DES-like survey in the southern hemisphere. We work with the $Lambda$CDM cosmological model having parameters ${h, Omega_m, n_s, Omega_b, sigma_8}$, parameters $v_{c,0}$ and $beta$ representing the cutoff and slope of the HI-halo mass relation in the previously developed HI halo model framework, and a parameter $Q$ that represents the scale dependence of the optical galaxy bias. Using a Fisher forecasting framework, we explore (i) the effects of the HI and galaxy astrophysical uncertainties on the cosmological parameter constraints, assuming priors from the present knowledge of the astrophysics, (ii) the improvements on astrophysical constraints over their current priors in the three configurations considered, (ii) the tightening of the constraints on the parameters relative to the corresponding HI auto-correlation surveys alone.
This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name eLISA) will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation and of the symmetry-breaking epoch directly after the Big Bang. eLISAs measurements will allow detailed studies of these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESAs Cosmic Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the science but also gives an overview on the mission design and orbits.
Line-Intensity Mapping is an emerging technique which promises new insights into the evolution of the Universe, from star formation at low redshifts to the epoch of reionization and cosmic dawn. It measures the integrated emission of atomic and molecular spectral lines from galaxies and the intergalactic medium over a broad range of frequencies, using instruments with aperture requirements that are greatly relaxed relative to surveys for single objects. A coordinated, comprehensive, multi-line intensity-mapping experimental effort can efficiently probe over 80% of the volume of the observable Universe - a feat beyond the reach of other methods. Line-intensity mapping will uniquely address a wide array of pressing mysteries in galaxy evolution, cosmology, and fundamental physics. Among them are the cosmic history of star formation and galaxy evolution, the compositions of the interstellar and intergalactic media, the physical processes that take place during the epoch of reionization, cosmological inflation, the validity of Einsteins gravity theory on the largest scales, the nature of dark energy and the origin of dark matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا