Do you want to publish a course? Click here

A Modular Sewing Kit for Entanglement Wedges

131   0   0.0 ( 0 )
 Added by Lampros Lamprou
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We relate the Riemann curvature of a holographic spacetime to an entanglement property of the dual CFT state: the Berry curvature of its modular Hamiltonians. The modular Berry connection encodes the relative bases of nearby CFT subregions while its bulk dual, restricted to the code subspace, relates the edge-mode frames of the corresponding entanglement wedges. At leading order in 1/N and for sufficiently smooth HRRT surfaces, the modular Berry connection simply sews together the orthonormal coordinate systems covering neighborhoods of HRRT surfaces. This geometric perspective on entanglement is a promising new tool for connecting the dynamics of entanglement and gravitation.



rate research

Read More

We present a new method of deriving shapes of entanglement wedges directly from CFT calculations. We point out that a reduced density matrix in holographic CFTs possesses a sharp wedge structure such that inside the wedge we can distinguish two local excitations, while outside we cannot. We can determine this wedge, which we call a CFT wedge, by computing a distinguishability measure. We find that CFT wedges defined by the fidelity or Bures distance as a distinguishability measure, coincide perfectly with shadows of entanglement wedges in AdS/CFT. We confirm this agreement between CFT wedges and entanglement wedges for two dimensional holographic CFTs where the subsystem is chosen to be an interval or double intervals, as well as higher dimensional CFTs with a round ball subsystem. On the other hand if we consider a free scalar CFT, we find that there are no sharp CFT wedges. This shows that sharp entanglement wedges emerge only for holographic CFTs owing to the large N factorization. We also generalize our analysis to a time-dependent example and to a holographic boundary conformal field theory (AdS/BCFT). Finally we study other distinguishability measures to define CFT wedges. We observe that some of measures lead to CFT wedges which slightly deviate from the entanglement wedges in AdS/CFT and we give a heuristic explanation for this. This paper is an extended version of our earlier letter arXiv:1908.09939 and includes various new observations and examples.
Modular flow is a symmetry of the algebra of observables associated to spacetime regions. Being closely related to entanglement, it has played a key role in recent connections between information theory, QFT and gravity. However, little is known about its action beyond highly symmetric cases. The key idea of this work is to introduce a new formula for modular flows for free chiral fermions in $1+1$ dimensions, working directly from the textit{resolvent}, a standard technique in complex analysis. We present novel results -- not fixed by conformal symmetry -- for disjoint regions on the plane, cylinder and torus. Depending on temperature and boundary conditions, these display different behaviour ranging from purely local to non-local in relation to the mixing of operators at spacelike separation. We find the modular two-point function, whose analytic structure is in precise agreement with the KMS condition that governs modular evolution. Our ready-to-use formulae may provide new ingredients to explore the connection between spacetime and entanglement.
Holographic entanglement entropy was recently recast in terms of Riemannian flows or bit threads. We consider the Lorentzian analog to reformulate the complexity=volume conjecture using Lorentzian flows -- timelike vector fields whose minimum flux through a boundary subregion is equal to the volume of the homologous maximal bulk Cauchy slice. By the nesting of Lorentzian flows, holographic complexity is shown to obey a number of properties. Particularly, the rate of complexity is bounded below by conditional complexity, describing a multi-step optimization with intermediate and final target states. We provide multiple explicit geometric realizations of Lorentzian flows in AdS backgrounds, including their time-dependence and behavior near the singularity in a black hole interior. Conceptually, discretized flows are interpreted as Lorentzian threads or gatelines. Upon selecting a reference state, complexity thence counts the minimum number of gatelines needed to prepare a target state described by a tensor network discretizing the maximal volume slice, matching its quantum information theoretic definition. We point out that suboptimal tensor networks are important to fully characterize the state, leading us to propose a refined notion of complexity as an ensemble average. The bulk symplectic potential provides a specific canonical thread configuration characterizing perturbations around arbitrary CFT states. Consistency of this solution requires the bulk satisfy the linearized Einsteins equations, which are shown to be equivalent to the holographic first law of complexity, thereby advocating for a principle of spacetime complexity. Lastly, we argue Lorentzian threads provide a notion of emergent time. This article is an expanded and detailed version of [arXiv:2105.12735], including several new results.
125 - Jan E. Gerken 2020
Modular graph forms (MGFs) are a class of non-holomorphic modular forms which naturally appear in the low-energy expansion of closed-string genus-one amplitudes and have generated considerable interest from pure mathematicians. MGFs satisfy numerous non-trivial algebraic- and differential relations which have been studied extensively in the literature and lead to significant simplifications. In this paper, we systematically combine these relations to obtain basis decompositions of all two- and three-point MGFs of total modular weight $w+bar{w}leq12$, starting from just two well-known identities for banana graphs. Furthermore, we study previously known relations in the integral representation of MGFs, leading to a new understanding of holomorphic subgraph reduction as Fay identities of Kronecker--Eisenstein series and opening the door towards decomposing divergent graphs. We provide a computer implementation for the manipulation of MGFs in the form of the $texttt{Mathematica}$ package $texttt{ModularGraphForms}$ which includes the basis decompositions obtained.
With the continuous development of science and technology, self-driving vehicles will surely change the nature of transportation and realize the automotive industrys transformation in the future. Compared with self-driving cars, self-driving buses are more efficient in carrying passengers and more environmentally friendly in terms of energy consumption. Therefore, it is speculated that in the future, self-driving buses will become more and more important. As a simulator for autonomous driving research, the CARLA simulator can help people accumulate experience in autonomous driving technology faster and safer. However, a shortcoming is that there is no modern bus model in the CARLA simulator. Consequently, people cannot simulate autonomous driving on buses or the scenarios interacting with buses. Therefore, we built a bus model in 3ds Max software and imported it into the CARLA to fill this gap. Our model, namely KIT bus, is proven to work in the CARLA by testing it with the autopilot simulation. The video demo is shown on our Youtube.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا