No Arabic abstract
We investigate the Joule expansion of nonintegrable quantum systems that contain bosons or spinless fermions in one-dimensional lattices. A barrier initially confines the particles to be in half of the system in a thermal state described by the canonical ensemble and is removed at time $t = 0$. We investigate the properties of the time-evolved density matrix, the diagonal ensemble density matrix and the corresponding canonical ensemble density matrix with an effective temperature determined by the total energy conservation using exact diagonalization. The weights for the diagonal ensemble and the canonical ensemble match well for high initial temperatures that correspond to negative effective final temperatures after the expansion. At long times after the barrier is removed, the time-evolved Renyi entropy of subsystems bigger than half can equilibrate to the thermal entropy with exponentially small fluctuations. The time-evolved reduced density matrix at long times can be approximated by a thermal density matrix for small subsystems. Few-body observables, like the momentum distribution function, can be approximated by a thermal expectation of the canonical ensemble with strongly suppressed fluctuations. The negative effective temperatures for finite systems go to nonnegative temperatures in the thermodynamic limit for bosons, but is a true thermodynamic effect for fermions, which is confirmed by finite temperature density matrix renormalization group calculations. We propose the Joule expansion as a way to dynamically create negative temperature states for fermion systems with repulsive interactions.
Quantum criticality of strongly attractive Fermi gas with $SU(3)$ symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations.The phase transitions driven by the chemical potential $mu$, effective magnetic field $H_1$, $H_2$ (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the thermodynamic Bethe ansatz equations in zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent $z=2$ and correlation length exponent $ u=1/2$ read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multi-component Fermi gases with $SU(N)$ symmetry.
One-dimensional polar gases in deep optical lattices present a severely constrained dynamics due to the interplay between dipolar interactions, energy conservation, and finite bandwidth. The appearance of dynamically-bound nearest-neighbor dimers enhances the role of the $1/r^3$ dipolar tail, resulting, in the absence of external disorder, in quasi-localization via dimer clustering for very low densities and moderate dipole strengths. Furthermore, even weak dipoles allow for the formation of self-bound superfluid lattice droplets with a finite doping of mobile, but confined, holons. Our results, which can be extrapolated to other power-law interactions, are directly relevant for current and future lattice experiments with magnetic atoms and polar molecules.
In the theory of Bethe-ansatz integrable quantum systems, rapidities play an important role as they are used to specify many-body states, apart from phases. The physical interpretation of rapidities going back to Sutherland is that they are the asymptotic momenta after letting a quantum gas expand into a larger volume making it dilute and noninteracting. We exploit this picture to make a direct connection to quantities that are accessible in sudden-expansion experiments with ultracold quantum gases. By a direct comparison of Bethe-ansatz and time-dependent density matrix renormalization group results, we demonstrate that the expansion velocity of a one-dimensional Fermi-Hubbard model can be predicted from knowing the distribution of occupied rapidities defined by the initial state. Curiously, an approximate Bethe-ansatz solution works well also for the Bose-Hubbard model.
We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasi-homogeneous atomic gas, prepared in an optical-box trap. We characterise the critical point for condensation and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einsteins textbook picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract a Joule-Thomson coefficient $mu_{rm JT} > 10^9$ K/bar, about ten orders of magnitude larger than observed in classical gases.
Simulating real-time evolution in theories of fundamental interactions represents one of the central challenges in contemporary theoretical physics. Cold-atom platforms stand as promising candidates to realize quantum simulations of non-perturbative phenomena in gauge theories, such as vacuum decay and hadron collisions, in prohibitive conditions for direct experiments. In this work, we demonstrate that present-day quantum simulators can imitate linear particle accelerators, giving access to S-matrix measurements of elastic and inelastic meson collisions in low-dimensional Abelian gauge theories. Considering for definiteness a $(1+1)$-dimensional $mathbb{Z}_2$-lattice gauge theory realizable with Rydberg-atom arrays, we present protocols to observe and measure selected meson-meson scattering processes. We provide a benchmark theoretical study of scattering amplitudes in the regime of large fermion mass, including an exact solution valid for arbitrary coupling strength. This allows us to discuss the occurrence of inelastic scattering channels, featuring the production of new mesons with different internal structures. We present numerical simulations of realistic wavepacket collisions, which reproduce the predicted cross section peaks. This work highlights the potential of quantum simulations to give unprecedented access to real-time scattering dynamics.