No Arabic abstract
We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasi-homogeneous atomic gas, prepared in an optical-box trap. We characterise the critical point for condensation and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einsteins textbook picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract a Joule-Thomson coefficient $mu_{rm JT} > 10^9$ K/bar, about ten orders of magnitude larger than observed in classical gases.
Bose-Einstein condensation is unique among phase transitions between different states of matter in the sense that it occurs even in the absence of interactions between particles. In Einsteins textbook picture of an ideal gas, purely statistical arguments set an upper bound on the number of particles occupying the excited states of the system, and condensation is driven by this saturation of the quantum vapour. Dilute ultracold atomic gases are celebrated as a realisation of Bose-Einstein condensation in close to its purely statistical form. Here we scrutinise this point of view using an ultracold gas of potassium (39K) atoms, in which the strength of interactions can be tuned via a Feshbach scattering resonance. We first show that under typical experi-mental conditions a partially condensed atomic gas strongly deviates from the textbook concept of a saturated vapour. We then use measurements at a range of interaction strengths and temperatures to extrapolate to the non-interacting limit, and prove that in this limit the behaviour of a Bose gas is consistent with the saturation picture. Finally, we provide evidence for the universality of our observations through additional measurements with a different atomic species, 87Rb. Our results suggest a new way of characterising condensation phenomena in different physical systems.
By quenching the strength of interactions in a partially condensed Bose gas we create a super-saturated vapor which has more thermal atoms than it can contain in equilibrium. Subsequently, the number of condensed atoms ($N_0$) grows even though the temperature ($T$) rises and the total atom number decays. We show that the non-equilibrium evolution of the system is isoenergetic and for small initial $N_0$ observe a clear separation between $T$ and $N_0$ dynamics, thus explicitly demonstrating the theoretically expected two-step picture of condensate growth. For increasing initial $N_0$ values we observe a crossover to classical relaxation dynamics. The size of the observed quench-induced effects can be explained using a simple equation of state for an interacting harmonically-trapped atomic gas.
Our understanding of various states of matter usually relies on the assumption of thermodynamic equilibrium. However, the transitions between different phases of matter can be strongly affected by non-equilibrium phenomena. Here we demonstrate and explain an example of non-equilibrium stalling of a continuous, second-order phase transition. We create a superheated atomic Bose gas, in which a Bose-Einstein condensate (BEC) persists above the equilibrium critical temperature, $T_c$, if its coupling to the surrounding thermal bath is reduced by tuning interatomic interactions. For vanishing interactions the BEC persists in the superheated regime for a minute. However, if strong interactions are suddenly turned on, it rapidly boils away. Our observations can be understood within a two-fluid picture, treating the condensed and thermal components of the gas as separate equilibrium systems with a tuneable inter-component coupling. We experimentally reconstruct a non-equilibrium phase diagram of our gas, and theoretically reproduce its main features.
We study the anisotropic, elliptic expansion of a thermal atomic Bose gas released from an anisotropic trapping potential, for a wide range of interaction strengths across a Feshbach resonance. We show that in our system this hydrodynamic phenomenon is for all interaction strengths fully described by a microscopic kinetic model with no free parameters. The success of this description crucially relies on taking into account the reduced thermalising power of elastic collisions in a strongly interacting gas, for which we derive an analytical theory. We also perform time-resolved measurements that directly reveal the dynamics of the energy transfer between the different expansion axes.
We propose experimentally feasible means for non-destructive thermometry of homogeneous Bose Einstein condensates in different spatial dimensions ($din{1,2,3}$). Our impurity based protocol suggests that the fundamental error bound on thermometry at the sub nano Kelvin domain depends highly on the dimension, in that the higher the dimension the better the precision. Furthermore, sub-optimal thermometry of the condensates by using measurements that are experimentally feasible is explored. We specifically focus on measuring position and momentum of the impurity that belong to the family of Gaussian measurements. We show that, generally, experimentally feasible measurements are far from optimal, except in 1D, where position measurements are indeed optimal. This makes realistic experiments perform very well at few nano Kelvin temperatures for all dimensions, and at sub nano Kelvin temperatures in the one dimensional scenario. These results take a significant step towards experimental realisation of probe-based quantum thermometry of Bose Einstein condensates, as it deals with them in one, two and three dimensions and uses feasible measurements applicable in current experimental setups.