Do you want to publish a course? Click here

Scattering of mesons in quantum simulators

95   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Simulating real-time evolution in theories of fundamental interactions represents one of the central challenges in contemporary theoretical physics. Cold-atom platforms stand as promising candidates to realize quantum simulations of non-perturbative phenomena in gauge theories, such as vacuum decay and hadron collisions, in prohibitive conditions for direct experiments. In this work, we demonstrate that present-day quantum simulators can imitate linear particle accelerators, giving access to S-matrix measurements of elastic and inelastic meson collisions in low-dimensional Abelian gauge theories. Considering for definiteness a $(1+1)$-dimensional $mathbb{Z}_2$-lattice gauge theory realizable with Rydberg-atom arrays, we present protocols to observe and measure selected meson-meson scattering processes. We provide a benchmark theoretical study of scattering amplitudes in the regime of large fermion mass, including an exact solution valid for arbitrary coupling strength. This allows us to discuss the occurrence of inelastic scattering channels, featuring the production of new mesons with different internal structures. We present numerical simulations of realistic wavepacket collisions, which reproduce the predicted cross section peaks. This work highlights the potential of quantum simulations to give unprecedented access to real-time scattering dynamics.



rate research

Read More

Gauge theories are the cornerstone of our understanding of fundamental interactions among particles. Their properties are often probed in dynamical experiments, such as those performed at ion colliders and high-intensity laser facilities. Describing the evolution of these strongly coupled systems is a formidable challenge for classical computers, and represents one of the key open quests for quantum simulation approaches to particle physics phenomena. Here, we show how recent experiments done on Rydberg atom chains naturally realize the real-time dynamics of a lattice gauge theory at system sizes at the boundary of classical computational methods. We prove that the constrained Hamiltonian dynamics induced by strong Rydberg interactions maps exactly onto the one of a $U(1)$ lattice gauge theory. Building on this correspondence, we show that the recently observed anomalously slow dynamics corresponds to a string-inversion mechanism, reminiscent of the string-breaking typically observed in gauge theories. This underlies the generality of this slow dynamics, which we illustrate in the context of one-dimensional quantum electrodynamics on the lattice. Within the same platform, we propose a set of experiments that generically show long-lived oscillations, including the evolution of particle-antiparticle pairs. Our work shows that the state of the art for quantum simulation of lattice gauge theories is at 51 qubits, and connects the recently observed slow dynamics in atomic systems to archetypal phenomena in particle physics
151 - Zhiyuan Yao , Lei Pan , Shang Liu 2021
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization at zero magnetic field, and it also exhibits an Ising quantum phase transition driven by finite magnetic field. Although the former involves the properties of generic excited states and the latter concerns the low-energy physics, we discover two surprising connections between them, inspired by the observation that both states possess log-volume law entanglement entropies. First, we show that the quantum many-body scar states can be tracked to a set of quantum critical states, whose nature can be understood as pair-wisely occupied Fermi sea states. Second, we show that the partial violation of quantum thermalization diminishes in the quantum critical regime. We envision that these connections can be extended to general situations and readily verified in existing cold atom experimental platforms.
We investigate the Joule expansion of nonintegrable quantum systems that contain bosons or spinless fermions in one-dimensional lattices. A barrier initially confines the particles to be in half of the system in a thermal state described by the canonical ensemble and is removed at time $t = 0$. We investigate the properties of the time-evolved density matrix, the diagonal ensemble density matrix and the corresponding canonical ensemble density matrix with an effective temperature determined by the total energy conservation using exact diagonalization. The weights for the diagonal ensemble and the canonical ensemble match well for high initial temperatures that correspond to negative effective final temperatures after the expansion. At long times after the barrier is removed, the time-evolved Renyi entropy of subsystems bigger than half can equilibrate to the thermal entropy with exponentially small fluctuations. The time-evolved reduced density matrix at long times can be approximated by a thermal density matrix for small subsystems. Few-body observables, like the momentum distribution function, can be approximated by a thermal expectation of the canonical ensemble with strongly suppressed fluctuations. The negative effective temperatures for finite systems go to nonnegative temperatures in the thermodynamic limit for bosons, but is a true thermodynamic effect for fermions, which is confirmed by finite temperature density matrix renormalization group calculations. We propose the Joule expansion as a way to dynamically create negative temperature states for fermion systems with repulsive interactions.
In recent years, dynamical quantum phase transitions (DQPTs) have emerged as a useful theoretical concept to characterize nonequilibrium states of quantum matter. DQPTs are marked by singular behavior in an textit{effective free energy} $lambda(t)$, which, however, is a global measure, making its experimental or theoretical detection challenging in general. We introduce two local measures for the detection of DQPTs with the advantage of requiring fewer resources than the full effective free energy. The first, called the textit{real-local} effective free energy $lambda_M(t)$, is defined in real space and is therefore suitable for systems where locally resolved measurements are directly accessible such as in quantum-simulator experiments involving Rydberg atoms or trapped ions. We test $lambda_M(t)$ in Ising chains with nearest-neighbor and power-law interactions, and find that this measure allows extraction of the universal critical behavior of DQPTs. The second measure we introduce is the textit{momentum-local} effective free energy $lambda_k(t)$, which is targeted at systems where momentum-resolved quantities are more naturally accessible, such as through time-of-flight measurements in ultracold atoms. We benchmark $lambda_k(t)$ for the Kitaev chain, a paradigmatic system for topological quantum matter, in the presence of weak interactions. Our introduced local measures for effective free energies can further facilitate the detection of DQPTs in modern quantum-simulator experiments.
Physical systems made of many interacting quantum particles can often be described by Euler hydrodynamic equations in the limit of long wavelengths and low frequencies. Recently such a classical hydrodynamic framework, now dubbed Generalized Hydrodynamics (GHD), was found for quantum integrable models in one spatial dimension. Despite its great predictive power, GHD, like any Euler hydrodynamic equation, misses important quantum effects, such as quantum fluctuations leading to non-zero equal-time correlations between fluid cells at different positions. Focusing on the one-dimensional gas of bosons with delta repulsion, and on states of zero entropy, for which quantum fluctuations are larger, we reconstruct such quantum effects by quantizing GHD. The resulting theory of quantum GHD can be viewed as a multi-component Luttinger liquid theory, with a small set of effective parameters that are fixed by the Thermodynamic Bethe Ansatz. It describes quantum fluctuations of truly nonequilibrium systems where conventional Luttinger liquid theory fails.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا