Do you want to publish a course? Click here

A novel ppm-precise absolute calibration method for precision high-voltage dividers

75   0   0.0 ( 0 )
 Added by Oliver Rest
 Publication date 2019
  fields Physics
and research's language is English
 Authors O. Rest




Ask ChatGPT about the research

The most common method to measure direct current high voltage (HV) down to the ppm-level is to use resistive high-voltage dividers. Such devices scale the HV into a range where it can be compared with precision digital voltmeters to reference voltages sources, which can be traced back to Josephson voltage standards. So far the calibration of the scale factors of HV dividers for voltages above 1~kV could only be done at metrology institutes and sometimes involves round-robin tests among several institutions to get reliable results. Here we present a novel absolute calibration method based on the measurement of a differential scale factor, which can be performed with commercial equipment and outside metrology institutes. We demonstrate that reproducible measurements up to 35~kV can be performed with relative uncertainties below $1cdot10^{-6}$. This method is not restricted to metrology institutes and offers the possibility to determine the linearity of high-voltage dividers for a wide range of applications.



rate research

Read More

160 - B. Blank , J. Souin , P. Ascher 2014
A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and gamma-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived on-line sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed beta decays for tests of the weak-interaction standard model.
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using a method of an alpha-gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performed to determine the mean de Broglie wavelength of the beam to a precision of 0.024 %. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058 %. We discuss the principle of the alpha-gamma method and present details of how the measurement was performed including the systematic effects. We also describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.
229 - B. Blank , P. Ascher , M. Gerbaux 2020
Following work done in the energy region above 100 keV, the high-precision calibration of a co-axial high-purity germanium detector has been continued in the energy region below 100 keV. Previous measurements or Monte-Carlo simulations have been repeated with higher statistics and new source measurements have been added. A precision as in the high-energy part, i.e. an absolute precision for the detection efficiency of 0.2%, has been reached. The low-energy behaviour of the germanium detector was further scrutinized by studying the germanium X-ray escape probability for the detection of low-energy photons. In addition, one experimental point, a gamma ray at 2168 keV from the decay of 38K, has been included for the total-to-peak ratios agreeing well with simulations. The same gamma ray was also added for the single- and double-escape probabilities. Finally, the long term stability of the efficiency of the germanium detector was investigated by regularly measuring the full-energy peak efficiency with a precisely calibrated 60Co source and found to be perfectly stable over a period of 10 years.
We propose a new method for absolute momentum calibration of magnetic spectrometers used in nuclear physics, using the time-of-flight (TOF), differences of pairs of particles with different masses. In cases where the flight path is not known, a calibration can be determined by using the TOF differences of two pair combinations of three particles. A Cherenkov detector, read out by a radio frequency photomultiplier tube, is considered as the high-resolution and highly stable TOF detector. By means of Monte Carlo simulations it is demonstrated that the magnetic spectrometers at the MAMI electron-scattering facility can be calibrated absolutely with an accuracy $delta p/pleq 10^{-4}$, which will be crucial for high precision determination of hypernuclear masses.
We have developed a mechanical absolute-rotation sensor capable of resolving ground rotation angle of less than 1 nrad$/sqrt{text{Hz}}$ above $30$ mHz and 0.2 nrad$/sqrt{text{Hz}}$ above $100$ mHz about a single horizontal axis. The device consists of a meter-scale beam balance, suspended by a pair of flexures, with a resonance frequency of 10.8 mHz. The center of mass is located 3 $mu$m above the pivot, giving an excellent horizontal displacement rejection of better than $3times10^{-5}$ rad/m. The angle of the beam is read out optically using a high-sensitivity autocollimator. We have also built a tiltmeter with better than 1 nrad$/sqrt{text{Hz}}$ sensitivity above 30 mHz. Co-located measurements using the two instruments allowed us to distinguish between background rotation signal at low frequencies and intrinsic instrument noise. The rotation sensor is useful for rotational seismology and for rejecting background rotation signal from seismometers in experiments demanding high levels of seismic isolation, such as Advanced LIGO.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا