Do you want to publish a course? Click here

From Knowledge Map to Mind Map: Artificial Imagination

112   0   0.0 ( 0 )
 Added by Ruixue Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Imagination is one of the most important factors which makes an artistic painting unique and impressive. With the rapid development of Artificial Intelligence, more and more researchers try to create painting with AI technology automatically. However, lacking of imagination is still a main problem for AI painting. In this paper, we propose a novel approach to inject rich imagination into a special painting art Mind Map creation. We firstly consider lexical and phonological similarities of seed word, then learn and inherit original painting style of the author, and finally apply Dadaism and impossibility of improvisation principles into painting process. We also design several metrics for imagination evaluation. Experimental results show that our proposed method can increase imagination of painting and also improve its overall quality.

rate research

Read More

We present a novel real-time, collaborative, and interactive AI painting system, Mappa Mundi, for artistic Mind Map creation. The system consists of a voice-based input interface, an automatic topic expansion module, and an image projection module. The key innovation is to inject Artificial Imagination into painting creation by considering lexical and phonological similarities of language, learning and inheriting artists original painting style, and applying the principles of Dadaism and impossibility of improvisation. Our system indicates that AI and artist can collaborate seamlessly to create imaginative artistic painting and Mappa Mundi has been applied in art exhibition in UCCA, Beijing
A mind-map is a diagram that represents the central concept and key ideas in a hierarchical way. Converting plain text into a mind-map will reveal its key semantic structure and be easier to understand. Given a document, the existing automatic mind-map generation method extracts the relationships of every sentence pair to generate the directed semantic graph for this document. The computation complexity increases exponentially with the length of the document. Moreover, it is difficult to capture the overall semantics. To deal with the above challenges, we propose an efficient mind-map generation network that converts a document into a graph via sequence-to-graph. To guarantee a meaningful mind-map, we design a graph refinement module to adjust the relation graph in a reinforcement learning manner. Extensive experimental results demonstrate that the proposed approach is more effective and efficient than the existing methods. The inference time is reduced by thousands of times compared with the existing methods. The case studies verify that the generated mind-maps better reveal the underlying semantic structures of the document.
The explorative mind-map is a dynamic framework, that emerges automatically from the input, it gets. It is unlike a verificative modeling system where existing (human) thoughts are placed and connected together. In this regard, explorative mind-maps change their size continuously, being adaptive with connectionist cells inside; mind-maps process data input incrementally and offer lots of possibilities to interact with the user through an appropriate communication interface. With respect to a cognitive motivated situation like a conversation between partners, mind-maps become interesting as they are able to process stimulating signals whenever they occur. If these signals are close to an own understanding of the world, then the conversational partner becomes automatically more trustful than if the signals do not or less match the own knowledge scheme. In this (position) paper, we therefore motivate explorative mind-maps as a cognitive engine and propose these as a decision support engine to foster trust.
89 - Kun Li , Peiming Li , Yong Zeng 2021
Channel knowledge map (CKM) is an emerging technique to enable environment-aware wireless communications, in which databases with location-specific channel knowledge are used to facilitate or even obviate real-time channel state information acquisition. One fundamental problem for CKM-enabled communication is how to efficiently construct the CKM based on finite measurement data points at limited user locations. Towards this end, this paper proposes a novel map construction method based on the emph{expectation maximization} (EM) algorithm, by utilizing the available measurement data, jointly with the expert knowledge of well-established statistic channel models. The key idea is to partition the available data points into different groups, where each group shares the same modelling parameter values to be determined. We show that determining the modelling parameter values can be formulated as a maximum likelihood estimation problem with latent variables, which is then efficiently solved by the classic EM algorithm. Compared to the pure data-driven methods such as the nearest neighbor based interpolation, the proposed method is more efficient since only a small number of modelling parameters need to be determined and stored. Furthermore, the proposed method is extended for constructing a specific type of CKM, namely, the channel gain map (CGM), where closed-form expressions are derived for the E-step and M-step of the EM algorithm. Numerical results are provided to show the effectiveness of the proposed map construction method as compared to the benchmark curve fitting method with one single model.
Feature maps contain rich information about image intensity and spatial correlation. However, previous online knowledge distillation methods only utilize the class probabilities. Thus in this paper, we propose an online knowledge distillation method that transfers not only the knowledge of the class probabilities but also that of the feature map using the adversarial training framework. We train multiple networks simultaneously by employing discriminators to distinguish the feature map distributions of different networks. Each network has its corresponding discriminator which discriminates the feature map from its own as fake while classifying that of the other network as real. By training a network to fool the corresponding discriminator, it can learn the other networks feature map distribution. We show that our method performs better than the conventional direct alignment method such as L1 and is more suitable for online distillation. Also, we propose a novel cyclic learning scheme for training more than two networks together. We have applied our method to various network architectures on the classification task and discovered a significant improvement of performance especially in the case of training a pair of a small network and a large one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا