No Arabic abstract
We present a novel real-time, collaborative, and interactive AI painting system, Mappa Mundi, for artistic Mind Map creation. The system consists of a voice-based input interface, an automatic topic expansion module, and an image projection module. The key innovation is to inject Artificial Imagination into painting creation by considering lexical and phonological similarities of language, learning and inheriting artists original painting style, and applying the principles of Dadaism and impossibility of improvisation. Our system indicates that AI and artist can collaborate seamlessly to create imaginative artistic painting and Mappa Mundi has been applied in art exhibition in UCCA, Beijing
Imagination is one of the most important factors which makes an artistic painting unique and impressive. With the rapid development of Artificial Intelligence, more and more researchers try to create painting with AI technology automatically. However, lacking of imagination is still a main problem for AI painting. In this paper, we propose a novel approach to inject rich imagination into a special painting art Mind Map creation. We firstly consider lexical and phonological similarities of seed word, then learn and inherit original painting style of the author, and finally apply Dadaism and impossibility of improvisation principles into painting process. We also design several metrics for imagination evaluation. Experimental results show that our proposed method can increase imagination of painting and also improve its overall quality.
Procedurally generating cohesive and interesting game environments is challenging and time-consuming. In order for the relationships between the game elements to be natural, common-sense has to be encoded into arrangement of the elements. In this work, we investigate a machine learning approach for world creation using content from the multi-player text adventure game environment LIGHT. We introduce neural network based models to compositionally arrange locations, characters, and objects into a coherent whole. In addition to creating worlds based on existing elements, our models can generate new game content. Humans can also leverage our models to interactively aid in worldbuilding. We show that the game environments created with our approach are cohesive, diverse, and preferred by human evaluators compared to other machine learning based world construction algorithms.
The explorative mind-map is a dynamic framework, that emerges automatically from the input, it gets. It is unlike a verificative modeling system where existing (human) thoughts are placed and connected together. In this regard, explorative mind-maps change their size continuously, being adaptive with connectionist cells inside; mind-maps process data input incrementally and offer lots of possibilities to interact with the user through an appropriate communication interface. With respect to a cognitive motivated situation like a conversation between partners, mind-maps become interesting as they are able to process stimulating signals whenever they occur. If these signals are close to an own understanding of the world, then the conversational partner becomes automatically more trustful than if the signals do not or less match the own knowledge scheme. In this (position) paper, we therefore motivate explorative mind-maps as a cognitive engine and propose these as a decision support engine to foster trust.
Most work on building knowledge bases has focused on collecting entities and facts from as large a collection of documents as possible. We argue for and describe a new paradigm where the focus is on a high-recall extraction over a small collection of documents under the supervision of a human expert, that we call Interactive Knowledge Base Population (IKBP).
Pragmatics studies how context can contribute to language meanings [1]. In human communication, language is never interpreted out of context, and sentences can usually convey more information than their literal meanings [2]. However, this mechanism is missing in most multi-agent systems [3, 4, 5, 6], restricting the communication efficiency and the capability of human-agent interaction. In this paper, we propose an algorithm, using which agents can spontaneously learn the ability to read between lines without any explicit hand-designed rules. We integrate the theory of mind (ToM) [7, 8] in a cooperative multi-agent pedagogical situation and propose an adaptive reinforcement learning (RL) algorithm to develop a communication protocol. ToM is a profound cognitive science concept, claiming that people regularly reason about others mental states, including beliefs, goals, and intentions, to obtain performance advantage in competition, cooperation or coalition. With this ability, agents consider language as not only messages but also rational acts reflecting others hidden states. Our experiments demonstrate the advantage of pragmatic protocols over non-pragmatic protocols. We also show the teaching complexity following the pragmatic protocol empirically approximates to recursive teaching dimension (RTD).