No Arabic abstract
The monopole-like singularity of Berrys adiabatic phase in momentum space and associated anomalous Poisson brackets have been recently discussed in various fields. With the help of the results of an exactly solvable version of Berrys model, we show that Berrys phase does not lead to the deformation of the principle of quantum mechanics in the sense of anomalous canonical commutators. If one should assume Berrys phase of genuine Dirac monopole-type, which is assumed to hold not only in the adiabatic limit but also in the non-adiabatic limit, the deformation of the principle of quantum mechanics could take place. But Berrys phase of the genuine Dirac monopole-type is not supported by the exactly solvable version of Berrys model nor by a generic model of Berrys phase. Besides, the monopole-like Berrys phase in momentum space has a magnetic charge $e_{M}=2pihbar$, for which the possible anomalous term in the canonical commutator $[x_{k},x_{l}]=ihbarOmega_{kl}$ would become of the order $O(hbar^{2})$.
A new static and azimuthally symmetric magnetic monopolelike object, which looks like a Dirac monopole when seen from far away but smoothly changes to a dipole near the monopole position and vanishes at the origin, is discussed. This monopolelike object is inspired by an analysis of an exactly solvable model of Berrys phase in the parameter space. A salient feature of the monopolelike potential ${cal A}_{k}(r,theta)$ with a magnetic charge $e_{M}$ is that the Dirac string is naturally described by the potential ${cal A}_{k}(r,theta)$, and the origin of the Dirac string and the geometrical center of the monopole are displaced in the coordinate space. The smooth topology change from a monopole to a dipole takes place if the Dirac string, when coupled to the electron, becomes unobservable by satisfying the Dirac quantization condition. The electric charge is then quantized even if the monopole changes to a dipole near the origin. In the transitional region from a monopole to a dipole, a half-monopole with a magnetic charge $e_{M}/2$ appears.
The smooth topology change of Berrys phase from a Dirac monopole-like configuration to a dipole configuration, when one approaches the monopole position in the parameter space, is analyzed in an exactly solvable model. A novel aspect of Berrys connection ${cal A}_{k}$ is that the geometrical center of the monopole-like configuration and the origin of the Dirac string are displaced in the parameter space. Gauss theorem $int_{S}( ablatimes {cal A})cdot dvec{S}=int_{V} ablacdot ( ablatimes {cal A}) dV=0$ for a volume $V$ which is free of singularities shows that a combination of the monopole-like configuration and the Dirac string is effectively a dipole. The smooth topology change from a dipole to a monopole with a quantized magnetic charge $e_{M}=2pihbar$ takes place when one regards the Dirac string as unobservable if it satisfies the Wu-Yang gauge invariance condition. In the transitional region from a dipole to a monopole, a half-monopole appears with an observable Dirac string, which is analogous to the Aharonov-Bohm phase of an electron for the magnetic flux generated by the Cooper pair condensation. The main topological features of an exactly solvable model are shown to be supported by a generic model of Berrys phase.
Berrys phase, which is associated with the slow cyclic motion with a finite period, looks like a Dirac monopole when seen from far away but smoothly changes to a dipole near the level crossing point in the parameter space in an exactly solvable model. This topology change of Berrys phase is visualized as a result of lensing effect; the monopole supposed to be located at the level crossing point appears at the displaced point when the variables of the model deviate from the precisely adiabatic movement. The effective magnetic field generated by Berrys phase is determined by a simple geometrical consideration of the magnetic flux coming from the displaced Dirac monopole.
We study the Casimir effect in axion electrodynamics. A finite $theta$-term affects the energy dispersion relation of photon if $theta$ is time and/or space dependent. We focus on a special case with linearly inhomogeneous $theta$ along the $z$-axis. Then we demonstrate that the Casimir force between two parallel plates perpendicular to the $z$-axis can be either attractive or repulsive, dependent on the gradient of $theta$. We call this repulsive component in the Casimir force induced by inhomogeneous $theta$ the anomalous Casimir effect.
Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral charge chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohms current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusion-like terms, we find also new dissipation-less terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.