Do you want to publish a course? Click here

Anomalous Casimir effect in axion electrodynamics

69   0   0.0 ( 0 )
 Added by Zebin Qiu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the Casimir effect in axion electrodynamics. A finite $theta$-term affects the energy dispersion relation of photon if $theta$ is time and/or space dependent. We focus on a special case with linearly inhomogeneous $theta$ along the $z$-axis. Then we demonstrate that the Casimir force between two parallel plates perpendicular to the $z$-axis can be either attractive or repulsive, dependent on the gradient of $theta$. We call this repulsive component in the Casimir force induced by inhomogeneous $theta$ the anomalous Casimir effect.



rate research

Read More

The fermion condensate (FC) is investigated for a (2+1)-dimensional massive fermionic field confined on a truncated cone with an arbitrary planar angle deficit and threaded by a magnetic flux. Different combinations of the boundary conditions are imposed on the edges of the cone. They include the bag boundary condition as a special case. By using the generalized Abel-Plana-type summation formula for the series over the eigenvalues of the radial quantum number, the edge-induced contributions in the FC are explicitly extracted. The FC is an even periodic function of the magnetic flux with the period equal to the flux quantum. Depending on the boundary conditions, the condensate can be either positive or negative. For a massless field the FC in the boundary-free conical geometry vanishes and the nonzero contributions are purely edge-induced effects. This provides a mechanism for time-reversal symmetry breaking in the absence of magnetic fields. Combining the results for the fields corresponding to two inequivalent irreducible representations of the Clifford algebra, the FC is investigated in the parity and time-reversal symmetric fermionic models and applications are discussed for graphitic cones.
We study higher-form symmetries and a higher group in $(3+1)$-dimensional axion electrodynamics where the axion and photon are massive. A topological field theory describing topological excitations with the axion-photon coupling is obtained in the low energy limit, in which higher-form symmetries are specified. By using intersections of the symmetry generators, we find that the worldvolume of an axionic domain wall is topologically ordered. We further specify the underlying mathematical structure elegantly describing all salient features of the theory to be a 4-group.
We study higher-form symmetries in a low-energy effective theory of a massless axion coupled with a photon in $(3+1)$ dimensions. It is shown that the higher-form symmetries of this system are accompanied by a semistrict 3-group (2-crossed module) structure, which can be found by the correlation functions of symmetry generators of the higher-form symmetries. We argue that the Witten effect and anomalous Hall effect in the axion electrodynamics can be described in terms of 3-group transformations.
We propose a definition of the Casimir energy for free lattice fermions. From this definition, we study the Casimir effects for the massless or massive naive fermion, Wilson fermion, and (Mobius) domain-wall fermion in $1+1$ dimensional spacetime with the spatial periodic or antiperiodic boundary condition. For the naive fermion, we find an oscillatory behavior of the Casimir energy, which is caused by the difference between odd and even lattice sizes. For the Wilson fermion, in the small lattice size of $N geq 3$, the Casimir energy agrees very well with that of the continuum theory, which suggests that we can control the discretization artifacts for the Casimir effect measured in lattice simulations. We also investigate the dependence on the parameters tunable in Mobius domain-wall fermions. Our findings will be observed both in condensed matter systems and in lattice simulations with a small size.
We investigate a higher-group structure of massless axion electrodynamics in $(3+1)$ dimensions. By using the background gauging method, we show that the higher-form symmetries necessarily have a global semistrict 3-group (2-crossed module) structure, and exhibit t Hooft anomalies of the 3-group. In particular, we find a cubic mixed t Hooft anomaly between 0-form and 1-form symmetries, which is specific to the higher-group structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا