No Arabic abstract
Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral charge chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohms current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusion-like terms, we find also new dissipation-less terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.
The nonlinear transport features of inhomogeneous chiral plasma in the presence of electromagnetic fields, in rotating coordinates are studied within the relaxation time approach. The chiral distribution functions up to second order in the electric field in rotating coordinates and the derivatives of chemical potentials are established by solving the Boltzmann transport equation. First, the vector and axial current densities in the weakly ionized chiral plasma for vanishing magnetic field are calculated. They involve the rotational analogues of the Hall effect as well as several new terms arising from the Coriolis and fictitious centrifugal forces. Then in the short relaxation time regime the angular velocity and electromagnetic fields are treated as perturbations. The current densities are obtained by retaining the terms up to second order in perturbations. The time evolution equations of the inhomogeneous chemical potentials are derived by demanding that collisions conserve the particle number densities.
Chiral anomaly is a very fundamental aspect of quantum theories with chiral fermion, from the Standard Model to supersymmetric field theories or even string theories. How such microscopic anomaly manifests itself in a macroscopic many-body system with chiral fermions, is a highly nontrivial question that has recently attracted significant interest. As it turns out, unusual transport currents can be induced by chiral anomaly under suitable conditions in such systems, with the notable example of the Chiral Magnetic Effect (CME) where a vector current (e.g. electric current) is generated along an external magnetic field. The CME has been enthusiastically studied in two very different physical systems: the Dirac and Weyl semimetals in condensed matter physics as well as the quark-gluon plasma in heavy ion collisions. In this contribution, we report the latest theoretical and experimental status for the search of CME in heavy ion collisions.
Axial anomaly and nesting is elucidated in the context of the inhomogeneous chiral phase. Using the Gross-Neveu models in 1+1 dimensions, we shall discuss axial anomaly and nesting from two different points of view: one is homogeneous chiral transition and the other is the Ferrel-Fulde-Larkin-Ovchinnikov (FFLO) state in superconductivity, which are closely related to each other by way of duality. It is shown that axial anomaly leads to a particular kind of the FFLO state within the two dimensional Nambu-Jona Lasinio model, where axial anomaly is manifested in a different mode. Nesting is a driving mechanism for both phenomena, but its realization has different features. We reconsider the effect of nesting in the context of duality.
We study the Casimir effect in axion electrodynamics. A finite $theta$-term affects the energy dispersion relation of photon if $theta$ is time and/or space dependent. We focus on a special case with linearly inhomogeneous $theta$ along the $z$-axis. Then we demonstrate that the Casimir force between two parallel plates perpendicular to the $z$-axis can be either attractive or repulsive, dependent on the gradient of $theta$. We call this repulsive component in the Casimir force induced by inhomogeneous $theta$ the anomalous Casimir effect.
We study anomalous chiral symmetry breaking in two-flavour QCD induced by gravitational and QCD-instantons within asymptotically safe gravity within the functional renormalisation group approach. Similarly to QCD-instantons, gravitational ones, associated to a K3-surface connected by a wormhole-like throat in flat spacetime, generate contributions to the t~Hooft coupling proportional to $exp(-1/g_N)$ with the dimensionless Newton coupling $g_N$. Hence, in the asymptotically safe gravity scenario with a non-vanishing fixed point coupling $g_N^*$, the induced t Hooft coupling is finite at the Planck scale, and its size depends on the chosen UV-completion. Within this scenario the gravitational effects on anomalous $U(1)_A$-breaking at the Planck scale may survive at low energy scales. In turn, fermion masses of the order of the Planck scale cannot be present. This constrains the allowed asymptotically safe UV-completion of the Gravity-QCD system. We map-out the parameter regime that is compatible with the existence of light fermions in the low-energy regime.