Do you want to publish a course? Click here

Using prior expansions for prior-data conflict checking

67   0   0.0 ( 0 )
 Added by David Nott
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Any Bayesian analysis involves combining information represented through different model components, and when different sources of information are in conflict it is important to detect this. Here we consider checking for prior-data conflict in Bayesian models by expanding the prior used for the analysis into a larger family of priors, and considering a marginal likelihood score statistic for the expansion parameter. Consideration of different expansions can be informative about the nature of any conflict, and extensions to hierarchically specified priors and connections with other approaches to prior-data conflict checking are discussed. Implementation in complex situations is illustrated with two applications. The first concerns testing for the appropriateness of a LASSO penalty in shrinkage estimation of coefficients in linear regression. Our method is compared with a recent suggestion in the literature designed to be powerful against alternatives in the exponential power family, and we use this family as the prior expansion for constructing our check. A second application concerns a problem in quantum state estimation, where a multinomial model is considered with physical constraints on the model parameters. In this example, the usefulness of different prior expansions is demonstrated for obtaining checks which are sensitive to different aspects of the prior.



rate research

Read More

In reliability engineering, data about failure events is often scarce. To arrive at meaningful estimates for the reliability of a system, it is therefore often necessary to also include expert information in the analysis, which is straightforward in the Bayesian approach by using an informative prior distribution. A problem called prior-data conflict then can arise: observed data seem very surprising from the viewpoint of the prior, i.e., information from data is in conflict with prior assumptions. Models based on conjugate priors can be insensitive to prior-data conflict, in the sense that the spread of the posterior distribution does not increase in case of such a conflict, thus conveying a false sense of certainty. An approach to mitigate this issue is presented, by considering sets of prior distributions to model limited knowledge on Weibull distributed component lifetimes, treating systems with arbitrary layout using the survival signature. This approach can be seen as a robust Bayesian procedure or imprecise probability method that reflects surprisingly early or late component failures by wider system reliability bounds.
In Bayesian statistics, the choice of prior distribution is often debatable, especially if prior knowledge is limited or data are scarce. In imprecise probability, sets of priors are used to accurately model and reflect prior knowledge. This has the advantage that prior-data conflict sensitivity can be modelled: Ranges of posterior inferences should be larger when prior and data are in conflict. We propose a new method for generating prior sets which, in addition to prior-data conflict sensitivity, allows to reflect strong prior-data agreement by decreased posterior imprecision.
The multinomial model is one of the simplest statistical models. When constraints are placed on the possible values for the probabilities, however, it becomes much more difficult to deal with. Model checking and checking for prior-data conflict is considered here for such models. A theorem is proved that establishes the consistency of the check on the prior. Applications are presented to models that arise in quantum state estimation as well as the Bayesian analysis of models for ordered probabilities.
In this article, we consider a non-parametric Bayesian approach to multivariate quantile regression. The collection of related conditional distributions of a response vector Y given a univariate covariate X is modeled using a Dependent Dirichlet Process (DDP) prior. The DDP is used to introduce dependence across x. As the realizations from a Dirichlet process prior are almost surely discrete, we need to convolve it with a kernel. To model the error distribution as flexibly as possible, we use a countable mixture of multidimensional normal distributions as our kernel. For posterior computations, we use a truncated stick-breaking representation of the DDP. This approximation enables us to deal with only a finitely number of parameters. We use a Block Gibbs sampler for estimating the model parameters. We illustrate our method with simulation studies and real data applications. Finally, we provide a theoretical justification for the proposed method through posterior consistency. Our proposed procedure is new even when the response is univariate.
110 - Duncan Lee 2012
Disease maps display the spatial pattern in disease risk, so that high-risk clusters can be identified. The spatial structure in the risk map is typically represented by a set of random effects, which are modelled with a conditional autoregressive (CAR) prior. Such priors include a global spatial smoothing parameter, whereas real risk surfaces are likely to include areas of smooth evolution as well as discontinuities, the latter of which are known as risk boundaries. Therefore, this paper proposes an extension to the class of CAR priors, which can identify both areas of localised spatial smoothness and risk boundaries. However, allowing for this localised smoothing requires large numbers of correlation parameters to be estimated, which are unlikely to be well identified from the data. To address this problem we propose eliciting an informative prior about the locations of such boundaries, which can be combined with the information from the data to provide more precise posterior inference. We test our approach by simulation, before applying it to a study of the risk of emergency admission to hospital in Greater Glasgow, Scotland.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا