No Arabic abstract
In reliability engineering, data about failure events is often scarce. To arrive at meaningful estimates for the reliability of a system, it is therefore often necessary to also include expert information in the analysis, which is straightforward in the Bayesian approach by using an informative prior distribution. A problem called prior-data conflict then can arise: observed data seem very surprising from the viewpoint of the prior, i.e., information from data is in conflict with prior assumptions. Models based on conjugate priors can be insensitive to prior-data conflict, in the sense that the spread of the posterior distribution does not increase in case of such a conflict, thus conveying a false sense of certainty. An approach to mitigate this issue is presented, by considering sets of prior distributions to model limited knowledge on Weibull distributed component lifetimes, treating systems with arbitrary layout using the survival signature. This approach can be seen as a robust Bayesian procedure or imprecise probability method that reflects surprisingly early or late component failures by wider system reliability bounds.
Any Bayesian analysis involves combining information represented through different model components, and when different sources of information are in conflict it is important to detect this. Here we consider checking for prior-data conflict in Bayesian models by expanding the prior used for the analysis into a larger family of priors, and considering a marginal likelihood score statistic for the expansion parameter. Consideration of different expansions can be informative about the nature of any conflict, and extensions to hierarchically specified priors and connections with other approaches to prior-data conflict checking are discussed. Implementation in complex situations is illustrated with two applications. The first concerns testing for the appropriateness of a LASSO penalty in shrinkage estimation of coefficients in linear regression. Our method is compared with a recent suggestion in the literature designed to be powerful against alternatives in the exponential power family, and we use this family as the prior expansion for constructing our check. A second application concerns a problem in quantum state estimation, where a multinomial model is considered with physical constraints on the model parameters. In this example, the usefulness of different prior expansions is demonstrated for obtaining checks which are sensitive to different aspects of the prior.
In Bayesian statistics, the choice of prior distribution is often debatable, especially if prior knowledge is limited or data are scarce. In imprecise probability, sets of priors are used to accurately model and reflect prior knowledge. This has the advantage that prior-data conflict sensitivity can be modelled: Ranges of posterior inferences should be larger when prior and data are in conflict. We propose a new method for generating prior sets which, in addition to prior-data conflict sensitivity, allows to reflect strong prior-data agreement by decreased posterior imprecision.
In logistic regression, separation occurs when a linear combination of the predictors can perfectly classify part or all of the observations in the sample, and as a result, finite maximum likelihood estimates of the regression coefficients do not exist. Gelman et al. (2008) recommended independent Cauchy distributions as default priors for the regression coefficients in logistic regression, even in the case of separation, and reported posterior modes in their analyses. As the mean does not exist for the Cauchy prior, a natural question is whether the posterior means of the regression coefficients exist under separation. We prove theorems that provide necessary and sufficient conditions for the existence of posterior means under independent Cauchy priors for the logit link and a general family of link functions, including the probit link. We also study the existence of posterior means under multivariate Cauchy priors. For full Bayesian inference, we develop a Gibbs sampler based on Polya-Gamma data augmentation to sample from the posterior distribution under independent Student-t priors including Cauchy priors, and provide a companion R package in the supplement. We demonstrate empirically that even when the posterior means of the regression coefficients exist under separation, the magnitude of the posterior samples for Cauchy priors may be unusually large, and the corresponding Gibbs sampler shows extremely slow mixing. While alternative algorithms such as the No-U-Turn Sampler in Stan can greatly improve mixing, in order to resolve the issue of extremely heavy tailed posteriors for Cauchy priors under separation, one would need to consider lighter tailed priors such as normal priors or Student-t priors with degrees of freedom larger than one.
In this paper we show that there is a link between approximate Bayesian methods and prior robustness. We show that what is typically recognized as an approximation to the likelihood, either due to the simulated data as in the Approximate Bayesian Computation (ABC) methods or due to the functional approximation to the likelihood, can instead also be viewed upon as an implicit exercise in prior robustness. We first define two new classes of priors for the cases where the sufficient statistics is available, establish their mathematical properties and show, for a simple illustrative example, that these classes of priors can also be used to obtain the posterior distribution that would be obtained by implementing ABC. We then generalize and define two further classes of priors that are applicable in very general scenarios; one where the sufficient statistics is not available and another where the likelihood is approximated using a functional approximation. We then discuss the interpretation and elicitation aspects of the classes proposed here as well as their potential applications and possible computational benefits. These classes establish the duality between approximate Bayesian inference and prior robustness for a wide category of Bayesian inference methods.
In (exploratory) factor analysis, the loading matrix is identified only up to orthogonal rotation. For identifiability, one thus often takes the loading matrix to be lower triangular with positive diagonal entries. In Bayesian inference, a standard practice is then to specify a prior under which the loadings are independent, the off-diagonal loadings are normally distributed, and the diagonal loadings follow a truncated normal distribution. This prior specification, however, depends in an important way on how the variables and associated rows of the loading matrix are ordered. We show how a minor modification of the approach allows one to compute with the identifiable lower triangular loading matrix but maintain invariance properties under reordering of the variables.