Do you want to publish a course? Click here

Bayesian Multivariate Quantile Regression Using Dependent Dirichlet Process Prior

86   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this article, we consider a non-parametric Bayesian approach to multivariate quantile regression. The collection of related conditional distributions of a response vector Y given a univariate covariate X is modeled using a Dependent Dirichlet Process (DDP) prior. The DDP is used to introduce dependence across x. As the realizations from a Dirichlet process prior are almost surely discrete, we need to convolve it with a kernel. To model the error distribution as flexibly as possible, we use a countable mixture of multidimensional normal distributions as our kernel. For posterior computations, we use a truncated stick-breaking representation of the DDP. This approximation enables us to deal with only a finitely number of parameters. We use a Block Gibbs sampler for estimating the model parameters. We illustrate our method with simulation studies and real data applications. Finally, we provide a theoretical justification for the proposed method through posterior consistency. Our proposed procedure is new even when the response is univariate.



rate research

Read More

We propose Dirichlet Process Mixture (DPM) models for prediction and cluster-wise variable selection, based on two choices of shrinkage baseline prior distributions for the linear regression coefficients, namely the Horseshoe prior and Normal-Gamma prior. We show in a simulation study that each of the two proposed DPM models tend to outperform the standard DPM model based on the non-shrinkage normal prior, in terms of predictive, variable selection, and clustering accuracy. This is especially true for the Horseshoe model, and when the number of covariates exceeds the within-cluster sample size. A real data set is analyzed to illustrate the proposed modeling methodology, where both proposed DPM models again attained better predictive accuracy.
In this paper, we develop a quantile functional regression modeling framework that models the distribution of a set of common repeated observations from a subject through the quantile function, which is regressed on a set of covariates to determine how these factors affect various aspects of the underlying subject-specific distribution. To account for smoothness in the quantile functions, we introduce custom basis functions we call textit{quantlets} that are sparse, regularized, near-lossless, and empirically defined, adapting to the features of a given data set and containing a Gaussian subspace so {non-Gaussianness} can be assessed. While these quantlets could be used within various functional regression frameworks, we build a Bayesian framework that uses nonlinear shrinkage of quantlet coefficients to regularize the functional regression coefficients and allows fully Bayesian inferences after fitting a Markov chain Monte Carlo. Specifically, we apply global tests to assess which covariates have any effect on the distribution at all, followed by local tests to identify at which specific quantiles the differences lie while adjusting for multiple testing, and to assess whether the covariate affects certain major aspects of the distribution, including location, scale, skewness, Gaussianness, or tails. If the difference lies in these commonly-used summaries, our approach can still detect them, but our systematic modeling strategy can also detect effects on other aspects of the distribution that might be missed if one restricted attention to pre-chosen summaries. We demonstrate the benefit of the basis space modeling through simulation studies, and illustrate the method using a biomedical imaging data set in which we relate the distribution of pixel intensities from a tumor image to various demographic, clinical, and genetic characteristics.
Radiomics involves the study of tumor images to identify quantitative markers explaining cancer heterogeneity. The predominant approach is to extract hundreds to thousands of image features, including histogram features comprised of summaries of the marginal distribution of pixel intensities, which leads to multiple testing problems and can miss out on insights not contained in the selected features. In this paper, we present methods to model the entire marginal distribution of pixel intensities via the quantile function as functional data, regressed on a set of demographic, clinical, and genetic predictors. We call this approach quantile functional regression, regressing subject-specific marginal distributions across repeated measurements on a set of covariates, allowing us to assess which covariates are associated with the distribution in a global sense, as well as to identify distributional features characterizing these differences, including mean, variance, skewness, and various upper and lower quantiles. To account for smoothness in the quantile functions, we introduce custom basis functions we call quantlets that are sparse, regularized, near-lossless, and empirically defined, adapting to the features of a given data set. We fit this model using a Bayesian framework that uses nonlinear shrinkage of quantlet coefficients to regularize the functional regression coefficients and provides fully Bayesian inference after fitting a Markov chain Monte Carlo. We demonstrate the benefit of the basis space modeling through simulation studies, and apply the method to Magnetic resonance imaging (MRI) based radiomic dataset from Glioblastoma Multiforme to relate imaging-based quantile functions to demographic, clinical, and genetic predictors, finding specific differences in tumor pixel intensity distribution between males and females and between tumors with and without DDIT3 mutations.
168 - Linglong Kong , Ivan Mizera 2013
The use of quantiles to obtain insights about multivariate data is addressed. It is argued that incisive insights can be obtained by considering directional quantiles, the quantiles of projections. Directional quantile envelopes are proposed as a way to condense this kind of information; it is demonstrated that they are essentially halfspace (Tukey) depth levels sets, coinciding for elliptic distributions (in particular multivariate normal) with density contours. Relevant questions concerning their indexing, the possibility of the reverse retrieval of directional quantile information, invariance with respect to affine transformations, and approximation/asymptotic properties are studied. It is argued that the analysis in terms of directional quantiles and their envelopes offers a straightforward probabilistic interpretation and thus conveys a concrete quantitative meaning; the directional definition can be adapted to elaborate frameworks, like estimation of extreme quantiles and directional quantile regression, the regression of depth contours on covariates. The latter facilitates the construction of multivariate growth charts---the question that motivated all the development.
Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covariance matrix is positive definite. To address the issue, we propose to use convolved Gaussian process (CGP) in this paper. The approach provides a semi-parametric model and offers a natural framework for modeling common mean structure and covariance structure simultaneously. The CGP enables the model to define different covariance structure for each component of the response variables. This flexibility ensures the model to cope with data coming from different resources or having different data structures, and thus to provide accurate estimation and prediction. In addition, the model is able to accommodate large-dimensional covariates. The definition of the model, the inference and the implementation, as well as its asymptotic properties, are discussed. Comprehensive numerical examples with both simulation studies and real data are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا