Do you want to publish a course? Click here

Room temperature local nematicity in FeSe superconductor

97   0   0.0 ( 0 )
 Added by Robert Koch
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report pair distribution function measurements of the iron-based superconductor FeSe above and below the structural transition temperature. Structural analysis reveals a local orthorhombic distortion with a correlation length of about 4 nm at temperatures where an average tetragonal symmetry is observed. The analysis further demonstrates that the local distortion is larger than the distortion at temperatures where the average observed symmetry is orthorhombic. Our results suggest that the low-temperature macroscopic nematic state in FeSe forms from an imperfect ordering of orbital-degeneracy-lifted nematic fluctuations which persist up to at least 300 K.



rate research

Read More

186 - Warren E. Pickett 2006
The vision of ``room temperature superconductivity has appeared intermittently but prominently in the literature since 1964, when W. A. Little and V. L. Ginzburg began working on the `problem of high temperature superconductivity around the same time. Since that time the prospects for room temperature superconductivity have varied from gloom (around 1980) to glee (the years immediately after the discovery of HTS), to wait-and-see (the current feeling). Recent discoveries have clarified old issues, making it possible to construct the blueprint for a viable room temperature superconductor.
Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetotransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high $T_c$ superconductivity of FeSe systems.
143 - P. Massat , D. Farina , I. Paul 2016
The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is one of the most intriguing property of the iron based superconductors (Fe SC), and has relevance for the cuprates as well. Establishing the critical electronic modes behind nematicity remains however a challenge, because their associated susceptibilities are not easily accessible by conventional probes. Here using FeSe as a model system, and symmetry resolved electronic Raman scattering as a probe, we unravel the presence of critical charge nematic fluctuations near the structural / nematic transition temperature, T$_Ssim$ 90 K. The diverging behavior of the associated nematic susceptibility foretells the presence of a Pomeranchuk instability of the Fermi surface with d-wave symmetry. The excellent scaling between the observed nematic susceptibility and elastic modulus data demonstrates that the structural distortion is driven by this d-wave Pomeranchuk transition. Our results make a strong case for charge induced nematicity in FeSe.
A very fundamental and unconventional characteristic of superconductivity in iron-based materials is that it occurs in the vicinity of {it two} other instabilities. Apart from a tendency towards magnetic order, these Fe-based systems have a propensity for nematic ordering: a lowering of the rotational symmetry while time-reversal invariance is preserved. Setting the stage for superconductivity, it is heavily debated whether the nematic symmetry breaking is driven by lattice, orbital or spin degrees of freedom. Here we report a very clear splitting of NMR resonance lines in FeSe at $T_{nem}$ = 91K, far above superconducting $T_c$ of 9.3 K. The splitting occurs for magnetic fields perpendicular to the Fe-planes and has the temperature dependence of a Landau-type order-parameter. Spin-lattice relaxation rates are not affected at $T_{nem}$, which unequivocally establishes orbital degrees of freedom as driving the nematic order. We demonstrate that superconductivity competes with the emerging nematicity.
We have performed high-resolution angle-resolved photoemission spectroscopy on FeSe superconductor (Tc ~ 8 K), which exhibits a tetragonal-to-orthorhombic structural transition at Ts ~ 90 K. At low temperature we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of electronically driven nematic states. This band splitting persists up to T ~ 110 K, slightly above Ts, suggesting that the structural transition is triggered by the electronic nematicity. We have also revealed that at low temperature the band splitting gives rise to a van Hove singularity within 5 meV of the Fermi energy. The present result strongly suggests that this unusual electronic state is responsible for the unconventional superconductivity in FeSe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا