Do you want to publish a course? Click here

Design for a Room Temperature Superconductor

187   0   0.0 ( 0 )
 Added by Warren E. Pickett
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The vision of ``room temperature superconductivity has appeared intermittently but prominently in the literature since 1964, when W. A. Little and V. L. Ginzburg began working on the `problem of high temperature superconductivity around the same time. Since that time the prospects for room temperature superconductivity have varied from gloom (around 1980) to glee (the years immediately after the discovery of HTS), to wait-and-see (the current feeling). Recent discoveries have clarified old issues, making it possible to construct the blueprint for a viable room temperature superconductor.



rate research

Read More

We report pair distribution function measurements of the iron-based superconductor FeSe above and below the structural transition temperature. Structural analysis reveals a local orthorhombic distortion with a correlation length of about 4 nm at temperatures where an average tetragonal symmetry is observed. The analysis further demonstrates that the local distortion is larger than the distortion at temperatures where the average observed symmetry is orthorhombic. Our results suggest that the low-temperature macroscopic nematic state in FeSe forms from an imperfect ordering of orbital-degeneracy-lifted nematic fluctuations which persist up to at least 300 K.
Lanthanum hydride LaH$_{10}$ with a sodalitelike clathrate structure was experimentally realized to exhibit a room-temperature superconductivity under megabar pressures. Based on first-principles calculations, we reveal that the metal framework of La atoms has the excess electrons at interstitial regions. Such anionic electrons are easily captured to form a stable clathrate structure of H cages. We thus propose that the charge transfer from La to H atoms is mostly driven by the electride property of the La framework. Further, the interaction between La atoms and H cages induces a delocalization of La-5$p$ semicore states to hybridize with H-1$s$ state. Consequently, the bonding nature between La atoms and H cages is characterized as a mixture of ionic and covalent. Our findings demonstrate that anionic and semicore electrons play important roles in stabilizing clathrate H cages in LaH$_{10}$, which can be broadly applicable to other high-pressure rare-earth hydrides with clathrate structures.
X-ray diffraction indicates that the structure of the recently discovered room temperature carbonaceous sulfur hydride (C-S-H) superconductor is derived from previously established van der Waals compounds found in the H$_2$S-H$_2$ and CH$_4$-H$_2$ systems. Crystals of the superconducting phase were produced by a photochemical synthesis technique leading to the superconducting critical temperature $T_c$ of 288 K at 267 GPa. Single-crystal x-ray diffraction patterns measured from 124 to 178 GPa, within the pressure range of the superconducting phase, give an orthorhombic structure derived from the Al$_2$Cu-type determined for (H$_2$S)$_2$H$_2$ and (CH$_4$)$_2$H$_2$ that differs from those predicted and observed for the S-H system to these pressures. The formation and stability of the C-S-H compound can be understood in terms of the close similarity in effective volumes of the H$_2$S and CH$_4$ components over a broad range of pressures. The relative amounts of carbon and sulfur in the structure is not determined, and denser carbon-bearing S-H structures may form at higher pressures. The results are consistent with hole-doping enhancement of $T_c$ by carbon proposed for the room-temperature superconductivity in this system.
It is a honor to write a contribution on this memorial for Sandro Massidda. For both of us, at different stages of our life, Sandro was first and foremost a friend. We both admired his humble, playful and profound approach to life and physics. In this contribution we describe the route which permitted to meet a long-standing challenge in solid state physics, i.e. room temperature superconductivity. In less than 20 years the Tc of conventional superconductors, which in the last century had been widely believed to be limited to 25 K, was raised from 40 K in MgB2 to 265 K in LaH10. This discovery was enabled by the development and application of computational methods for superconductors, a field in which Sandro Massidda played a major role.
Nanoparticles of superconducting YBa2Cu3O7-delta (YBCO) (Tc = 91 K) exhibit ferromagnetism at room temperature while the bulk YBCO, obtained by heating the nanoparticles at high temperature (940 degree C), shows a linear magnetization curve. Across the superconducting transition temperature, the magnetization curve changes from that of a soft ferromagnet to a superconductor. Furthermore, our experiments reveal that not only nanoparticles of metal oxides but also metal nitrides such as NbN (Tc = 6 - 12 K) and delta-MoN (Tc ~ 6 K) exhibit room-temperature ferromagnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا