Do you want to publish a course? Click here

HEJ 2: High Energy Resummation for Hadron Colliders

59   0   0.0 ( 0 )
 Added by Andreas Maier
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We present HEJ 2, a new implementation of the High Energy Jets formalism for high-energy resummation in hadron-collider processes as a flexible Monte Carlo event generator. In combination with a conventional fixed-order event generator, HEJ 2 can be used to obtain greatly improved predictions for a number of phenomenologically important processes by adding all-order logarithmic corrections in $hat{s}/p_perp^2$. A prime example for such a process is the gluon-fusion production of a Higgs boson in association with widely separated jets, which constitutes the dominant background to Higgs boson production in weak-boson fusion.



rate research

Read More

167 - G. Bozzi 2007
We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O(alpha_s). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for ~e_R ~e_R^* production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.
Direct photon production is an important process at hadron colliders, being relevant both for precision measurement of the gluon density, and as background to Higgs and other new physics searches. Here we explore the implications of recently derived results for high energy resummation of direct photon production for the interpretation of measurements at the Tevatron and the LHC. The effects of resummation are compared to various sources of theoretical uncertainties like PDFs and scale variations. We show how the high--energy resummation procedure stabilizes the logarithmic enhancement of the cross section at high--energy which is present at any fixed order in the perturbative expansion starting at NNLO. The effects of high--energy resummation are found to be negligible at Tevatron, while they enhance the cross section by a few percent for $p_T lsim 10$ GeV at the LHC. Our results imply that the discrepancy at small $p_T$ between fixed order NLO and Tevatron data cannot be explained by unresummed high--energy contributions.
We investigate the production of highly energetic top-quark pairs at hadron colliders, focusing on the case where the invariant mass of the pair is much larger than the mass of the top quark. In particular, we set up a factorization formalism appropriate for describing the differential partonic cross section in the double soft and small-mass limit, and explain how to resum simultaneously logarithmic corrections arising from soft gluon emission and from the ratio of the pair-invariant mass to that of the top quark to next-to-next-to-leading logarithmic accuracy. We explore the implications of our results on approximate next-to-next-to-leading order formulas for the differential cross section in the soft limit, pointing out that they offer a simplified calculational procedure for determining the currently unknown delta-function terms in the limit of high invariant mass.
We propose to study at the Large Hadron Collider (LHC) the inclusive production of a pair of hadrons (a di-hadron system) in a kinematics where two detected hadrons with high transverse momenta are separated by a large interval of rapidity. This process has much in common with the widely discussed Mueller-Navelet jet production and can also be used to access the dynamics of hard proton-parton interactions in the Regge limit. For both processes large contributions enhanced by logarithms of energy can be resummed in perturbation theory within the Balitsky-Fadin-Kuraev-Lipatov (BFKL) formalism with next-to-leading logarithmic accuracy (NLA). The experimental study of di-hadron production would provide with an additional clear channel to test the BFKL dynamics. We present here the first theoretical predictions for cross sections and azimuthal angle correlations of the di-hadrons produced with LHC kinematics.
We discuss cross sections for $tW$ production in proton-proton collisions at the LHC and at higher-energy colliders with energies of up to 100 TeV. We find that, remarkably, the soft-gluon corrections are numerically dominant even at very high collider energies. We present results with soft-gluon corrections at approximate NNLO and approximate N$^3$LO matched to complete NLO results. These higher-order corrections are large and need to be included for better theoretical accuracy and smaller scale dependence. Total cross sections as well as top-quark and $W$-boson transverse-momentum and rapidity distributions are presented using various recent sets of parton distribution functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا