Do you want to publish a course? Click here

High energy resummation of direct photon production at hadronic colliders

203   0   0.0 ( 0 )
 Added by Juan Rojo
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Direct photon production is an important process at hadron colliders, being relevant both for precision measurement of the gluon density, and as background to Higgs and other new physics searches. Here we explore the implications of recently derived results for high energy resummation of direct photon production for the interpretation of measurements at the Tevatron and the LHC. The effects of resummation are compared to various sources of theoretical uncertainties like PDFs and scale variations. We show how the high--energy resummation procedure stabilizes the logarithmic enhancement of the cross section at high--energy which is present at any fixed order in the perturbative expansion starting at NNLO. The effects of high--energy resummation are found to be negligible at Tevatron, while they enhance the cross section by a few percent for $p_T lsim 10$ GeV at the LHC. Our results imply that the discrepancy at small $p_T$ between fixed order NLO and Tevatron data cannot be explained by unresummed high--energy contributions.



rate research

Read More

224 - Giovanni Diana 2009
We present the computation of the direct photon production cross-section in perturbative QCD to all orders in the limit of high partonic center-of-mass energy. We show how the high-energy resummation can be performed consistently in the presence of a collinear singularity in the final state, we compare our results to the fixed order NLO cross-section in MSbar scheme, and we provide predictions at NNLO and beyond.
In this paper we analyse the double vector meson production in photon -- hadron ($gamma h$) interactions at $pp/pA/AA$ collisions and present predictions for the $rhorho$, $J/Psi J/Psi$ and $rho J/Psi$ production considering the double scattering mechanism. We estimate the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for the double vector meson production in $gamma gamma$ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS and LHCb Collaborations. Our results demonstrate that the $rhorho$ and $J/Psi J/Psi$ production in $PbPb$ collisions is dominated by the double scattering mechanism, while the two - photon mechanism dominates in $pp$ collisions. Moreover, our results indicate that the analysis of the $rho J/Psi$ production at LHC can be useful to constrain the double scattering mechanism.
256 - C. Balazs 1997
The production rate and kinematic distributions of isolated photon pairs produced in hadron interactions are studied. The effects of the initial-state multiple soft-gluon emission to the scattering subprocesses q-qbar, qg, and gg to gamma gamma X are resummed with the Collins-Soper-Sterman soft gluon resummation formalism. The effects of fragmentation photons from qg to gamma q, followed by q to gamma X, are also studied. The results are compared with data from the Fermilab Tevatron collider. A prediction of the production rate and kinematic distributions of the diphoton pair in proton-nucleon reactions is also presented.
Calibration of the absolute energy scale at high-energy photon (gamma-gamma, gamma-electron) colliders is discussed. The luminosity spectrum at photon colliders is broad and has a rather sharp high-energy edge, which can be used, for example, to measure the mass of the Higgs boson in the process gamma-gamma to H or masses of charged scalars by observing the cross-section threshold. In addition to the precise knowledge of the edge energy of the luminosity spectrum, it is even more important to have a way to calibrate the absolute energy scale of the detector. At first sight, Compton scattering itself provides a unique way to determine the beam energies and produce particles of known energies that could be used for detector calibration. The energy scale is given by the electron mass m_e and laser photon energy omega_0. However, this does not work at realistic photon colliders due to large nonlinear effects in Compton scattering at the conversion region (xi^2 sim 0.3). It is argued that the process gamma-electron to eZ_0 provides the best way to calibrate the energy scale of the detector, where the energy scale is given by m_Z.
We present HEJ 2, a new implementation of the High Energy Jets formalism for high-energy resummation in hadron-collider processes as a flexible Monte Carlo event generator. In combination with a conventional fixed-order event generator, HEJ 2 can be used to obtain greatly improved predictions for a number of phenomenologically important processes by adding all-order logarithmic corrections in $hat{s}/p_perp^2$. A prime example for such a process is the gluon-fusion production of a Higgs boson in association with widely separated jets, which constitutes the dominant background to Higgs boson production in weak-boson fusion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا