Do you want to publish a course? Click here

Higher-order corrections for $tW$ production at high-energy hadron colliders

65   0   0.0 ( 0 )
 Added by Nikolaos Kidonakis
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We discuss cross sections for $tW$ production in proton-proton collisions at the LHC and at higher-energy colliders with energies of up to 100 TeV. We find that, remarkably, the soft-gluon corrections are numerically dominant even at very high collider energies. We present results with soft-gluon corrections at approximate NNLO and approximate N$^3$LO matched to complete NLO results. These higher-order corrections are large and need to be included for better theoretical accuracy and smaller scale dependence. Total cross sections as well as top-quark and $W$-boson transverse-momentum and rapidity distributions are presented using various recent sets of parton distribution functions.



rate research

Read More

We present theoretical results with soft-gluon corrections for two separate processes: (1) the production of a single top quark in association with a $W$ boson in the Standard Model; and (2) the production of a single top quark in association with a heavy $Z$ boson in new physics models with or without anomalous couplings. We show that the higher-order corrections from soft-gluon emission are dominant for a wide range of collider energies. Results are shown for the total cross sections and top-quark transverse-momentum and rapidity distributions for $tW$ and $tZ$ production at LHC and future collider energies up to 100 TeV. The uncertainties from scale dependence and parton distribution functions are also analyzed.
We report on our recent work on electroweak corrections to $tbar{t}$ production at hadron colliders. Specifically, we discuss the weak-interaction contributions to the top quark transverse momentum and $t bar{t}$ invariant mass distributions and an induced parity-violating top-spin asymmetry.
202 - T. Binoth , T. Gleisberg , S. Karg 2009
A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new physics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.
249 - S. Actis , G. Passarino , C. Sturm 2008
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.
158 - S.Dittmaier , S.Kallweit , P.Uwer 2007
We report on the calculation of the next-to-leading order QCD corrections to the production of W-boson pairs in association with a hard jet at the Tevatron and the LHC, which is an important source of background for Higgs and new-physics searches. The corrections stabilize the leading-order prediction for the cross section considerably, in particular if a veto against the emission of a second hard jet is applied.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا