Do you want to publish a course? Click here

Terahertz conductivity of the magnetic Weyl semimetal Mn$_{3}$Sn films

66   0   0.0 ( 0 )
 Added by Bing Cheng
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mn$_{3}$Sn is a non-collinear antiferromagnet which displays a large anomalous Hall effect at room temperature. It is believed that the principal contribution to its anomalous Hall conductivity comes from Berry curvature. Moreover, dc transport and photoemission experiments have confirmed that Mn$_{3}$Sn may be an example of a time-reversal symmetry breaking Weyl semimetal. Due to a small, but finite moment in the room temperature inverse triangular spin structure, which allows control of the Hall current with external field, this material has garnered much interest for next generation memory devices and THz spintronics applications. In this work, we report a THz range study of oriented Mn$_{3}$Sn thin films as a function of temperature. At low frequencies we found the optical conductivity can be well described by a single Drude oscillator. The plasma frequency is strongly suppressed in a temperature dependent fashion as one enters the 260 K helical phase. This may be associated with partial gapping of the Fermi surfaces that comes from breaking translational symmetry along the c-axis. The scattering rate shows quadratic temperature dependence below 200 K, highlighting the possible important role of interactions in this compound.



rate research

Read More

123 - Shama , Goutam Sheet , 2020
We report the growth and magneto-transport studies of Pd$_{3}$Bi$_{2}$S$_{2}$ (PBS) thin films synthesized by pulsed laser deposition (PLD) technique. The magneto-transport study on pristine and post annealed films show the presence of more than one type of charge carrier with a carrier concentration in the range $0.6$ - $2.26~times$ 10$^{21}$ cm$^{-3}$ and mobility in the range 0.96 - 1.73 $times$ 10$^{2}$ cm$^{2}$/Vs. At low temperatures a logarithmic increase in conductivity is observed which indicates the presence of weak anti-localization (WAL). The magnetotransport data is analysed within the Hikami-Larkin-Nagaoka (HLN) theory. It is found that temperature dependence of the dephasing length cant be explained only by electron-electron scattering and that electron-phonon scattering also contributes to the phase relaxation mechanism in PBS films.
105 - Shama , R. K. Gopal , 2018
We report detailed magneto-transport measurements on single crystals of the magnetic Weyl semi-metal Co$_{3}$Sn$_{2}$S$_{2}$. Recently a large anomalous Hall effect and chiral anomaly have been observed in this material which have been suggested to be related to the large Berry curvature between the Weyl points (Liu et al., Nature Physics (2018).). Another effect expected to result from the topological band structure of magnetic Weyl materials is the planar Hall effect (PHE). In this work we report observation of this intrinsic effect in single crystals of Co$_{3}$Sn$_{2}$S$_{2}$. Crucially, the PHE is observed for temperature $T leq 74$~K which is much smaller than the ferromagnetic ordering temperature $T_c = 175$~K@. Together with the large anomalous Hall conductivity, this further demonstrates the Topological character of Co$_3$Sn$_2$S$_2$.
The search for novel topological phases of matter in quantum magnets has emerged as a frontier of condensed matter physics. Here we use state-of-the-art angle-resolved photoemission spectroscopy (ARPES) to investigate single crystals of Co$_3$Sn$_2$S$_2$ in its ferromagnetic phase. We report for the first time signatures of a topological Weyl loop. From fundamental symmetry considerations, this magnetic Weyl loop is expected to be gapless if spin-orbit coupling (SOC) is strictly zero but gapped, with possible Weyl points, under finite SOC. We point out that high-resolution ARPES results to date cannot unambiguously resolve the SOC gap anywhere along the Weyl loop, leaving open the possibility that Co$_3$Sn$_2$S$_2$ hosts zero Weyl points or some non-zero number of Weyl points. On the surface of our samples, we further observe a possible Fermi arc, but we are unable to clearly verify its topological nature using the established counting criteria. As a result, we argue that from the point of view of photoemission spectroscopy the presence of Weyl points and Fermi arcs in Co$_3$Sn$_2$S$_2$ remains ambiguous. Our results have implications for ongoing investigations of Co$_3$Sn$_2$S$_2$ and other topological magnets.
We present a method for measuring thermal expansion under tunable uniaxial stresses, and show measurements of the thermal expansion of Mn$_3$Sn, a room temperature antiferromagnet that exhibits a spontaneous Hall effect, under uniaxial stresses of up to 1.51 GPa compression. Measurement of thermal expansion provides thermodynamic data about the nature of phase transitions, and uniaxial stress provides a powerful tuning method that does not introduce disorder. Mn$_3$Sn exhibits an anomaly in its thermal expansion near $sim$270 K, associated with a first-order change in its magnetic structure. We show this transition temperature is suppressed by 54.6 K by 1.51 GPa compression along [0001]. We find the associated entropy change at the transition to be $sim$ 0.1 J mol$^{-1}$ K$^{-1}$ and to vary only weakly with applied stress.
72 - N. Xu , Z. W. Wang , A. Magrez 2018
Using soft x-ray angle-resolved photoemission spectroscopy we probed the bulk electronic structure of Td MoTe2. We found that on-site Coulomb interaction leads to a Lifshitz transition, which is essential for a precise description of the electronic structure. A hybrid Weyl semimetal state with a pair of energy bands touching at both type-I and type-II Weyl nodes is indicated by comparing the experimental data with theoretical calculations. Unveiling the importance of Coulomb interaction opens up a new route to comprehend the unique properties of MoTe2, and is significant for understanding the interplay between correlation effects, strong spin-orbit coupling and superconductivity in this van der Waals material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا