No Arabic abstract
The search for novel topological phases of matter in quantum magnets has emerged as a frontier of condensed matter physics. Here we use state-of-the-art angle-resolved photoemission spectroscopy (ARPES) to investigate single crystals of Co$_3$Sn$_2$S$_2$ in its ferromagnetic phase. We report for the first time signatures of a topological Weyl loop. From fundamental symmetry considerations, this magnetic Weyl loop is expected to be gapless if spin-orbit coupling (SOC) is strictly zero but gapped, with possible Weyl points, under finite SOC. We point out that high-resolution ARPES results to date cannot unambiguously resolve the SOC gap anywhere along the Weyl loop, leaving open the possibility that Co$_3$Sn$_2$S$_2$ hosts zero Weyl points or some non-zero number of Weyl points. On the surface of our samples, we further observe a possible Fermi arc, but we are unable to clearly verify its topological nature using the established counting criteria. As a result, we argue that from the point of view of photoemission spectroscopy the presence of Weyl points and Fermi arcs in Co$_3$Sn$_2$S$_2$ remains ambiguous. Our results have implications for ongoing investigations of Co$_3$Sn$_2$S$_2$ and other topological magnets.
We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ with quasi-two-dimensional structure. Both in-plane and out-of-plane dispersions of the spin waves are revealed in the ferromagnetic state, similarly dispersive but damped spin excitations persist into the paramagnetic state. The effective exchange interactions have been estimated by a semi-classical Heisenberg model to consistently reproduce the experimental $T_C$ and spin stiffness. However, a full spin wave gap below $E_g=2.3$ meV is observed at $T=4$ K, much larger than the estimated magnetic anisotropy energy ($sim0.6$ meV), while its temperature dependence indicates a significant contribution from the Weyl fermions. These results suggest that Co$_3$Sn$_2$S$_2$ is a three-dimensional correlated system with large spin stiffness, and the low-energy spin dynamics could interplay with the topological electron states.
Weyl semimetals with time reversal symmetry breaking are expected to show various fascinating physical behaviors, such as intrinsic giant anomalous Hall effect, chiral anomaly effect in the bulks, and Fermi arcs on the surfaces. Here we report a scanning tunneling microscopy study on the magnetic Weyl semimetal candidate Co$_3$Sn$_2$S$_2$. According to the morphology and local density of states of the surface, we provide assignments to different surface terminations. The measured local density of states reveals a semimetal gap of ~300 mV, which is further verified as the gap in spin-minority bands using spin-resolved tunneling spectra. Additionally, signature for the nontrivial surface states around 50 mV is proposed. This is further confirmed by the observations of standing waves around a step-edge of the sample. Our observations and their comparison with band structure calculations provide direct yet timely evidence for the bulk and surface band structures of the magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$.
Very recently, the half-metallic compound Co$_3$Sn$_2$S$_2$ was predicted to be a magnetic WSM with Weyl points only 60 meV above the Fermi level ($E_F$). Owing to the low charge carrier density and large Berry curvature induced, Co$_3$Sn$_2$S$_2$ possesses both a large anomalous Hall conductivity (AHC) and a large anomalous Hall angle (AHA), which provide strong evidence for the existence of Weyl points in Co$_3$Sn$_2$S$_2$. In this work, we theoretically studied the surface topological feature of Co$_3$Sn$_2$S$_2$ and its counterpart Co$_3$Sn$_2$Se$_2$. By cleaving the sample at the weak Sn-S/Se bonds, one can achieve two different surfaces terminated with Sn and S/Se atoms, respectively. The resulting Fermi arc related states can range from the energy of the Weyl points to $E_F$-0.1 eV in the Sn-terminated surface. Therefore, it should be possible to observe the Fermi arcs in angle-resolved photoemission spectroscopy (ARPES) measurements. Furthermore, in order to simulate quasiparticle interference (QPI) in scanning tunneling microscopy (STM) measurements, we also calculated the joint density of states (JDOS), which revealed that the QPI patterns arising from Fermi arc related scatterings are clearly visible for both terminals. This work would be helpful for a comprehensive understanding of the topological properties of these two magnetic WSMs and further ARPES and STM measurements.
Nodal-line metals and semimetals, as interesting topological states of matter, have been mostly studied in nonmagnetic materials. Here, based on first-principles calculations and symmetry analysis, we predict that fully spin-polarized Weyl loops can be realized in the half metal state for the three-dimensional material Li$_3$(FeO$_3$)$_2$. We show that this material has a ferromagnetic ground state, and it is a half metal with only a single spin channel present near the Fermi level. The spin-up bands form two separate Weyl loops close to the Fermi level, which arise from band
Temperature- and frequency-dependent infrared spectroscopy identifies two contributions to the electronic properties of the magnetic kagome metal Fe$_3$Sn$_2$: two-dimensional Dirac fermions and strongly correlated flat bands. The interband transitions within the linearly dispersing Dirac bands appear as a two-step feature along with a very narrow Drude component due to intraband contribution. Low-lying absorption features indicate flat bands with multiple van Hove singularities. Localized charge carriers are seen as a Drude-peak shifted to finite frequencies. The spectral weight is redistributed when the spins are reoriented at low temperatures; a sharp mode appears suggesting the opening of a gap due to the spin reorientation as the sign of additional Weyl nodes in the system.