No Arabic abstract
We discuss a possibility of restricting parameters in $mathcal{N}=2$ supergravity based on axion observations. We derive conditions that prepotential and gauge couplings should satisfy. Such conditions not only allow us to constrain the theory but also provide the lower bound of $mathcal{N}=2rightarrowmathcal{N}=1$ breaking scale.
We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a single real scalar survives, the theory is reduced to an Einstein-scalar system with a potential, which admits at most two AdS critical points and is expressed in terms of a real superpotential. Our solution is static, admits maximally symmetric horizons, asymptotically tends to AdS space corresponding to an extremum of the superpotential, but is disconnected from the Schwarzschild-AdS family. The condition under which the spacetime admits an event horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons the black holes can be extremal. In this case, the near-horizon geometry is AdS_2 x H^2, where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our solution displays fall-off behaviours different from the standard one, due to the fact that the mass parameter $m^2=-2/ell^2$ at the supersymmetric vacuum lies in a characteristic range $m^2_{BF}le m^2le m^2_{rm BF}+ell^{-2}$ for which the slowly decaying scalar field is also normalizable. Nevertheless, we identify a well-defined mass for our spacetime, following the prescription of Hertog and Maeda. Quite remarkably, the product of all horizon areas is not given in terms of the asymptotic cosmological constant alone, as one would expect in absence of electromagnetic charges and angular momentum. Our solution shows qualitatively the same thermodynamic behaviour as the Schwarzschild-AdS black hole, but the entropy is always smaller for a given mass and AdS curvature radius. We also find that our spherical black holes are unstable against radial perturbations.
We investigate a family of SU(3)$times$U(1)$times$U(1)-invariant holographic flows and Janus solutions obtained from gauged $mathcal{N}=8$ supergravity in four dimensions. We give complete details of how to use the uplift formulae to obtain the corresponding solutions in M theory. While the flow solutions appear to be singular from the four-dimensional perspective, we find that the eleven-dimensional solutions are much better behaved and give rise to interesting new classes of compactification geometries that are smooth, up to orbifolds, in the infra-red limit. Our solutions involve new phases in which M2 branes polarize partially or even completely into M5 branes. We derive the eleven-dimensional supersymmetries and show that the eleven-dimensional equations of motion and BPS equations are indeed satisfied as a consequence of their four-dimensional counterparts. Apart from elucidating a whole new class of eleven-dimensional Janus and flow solutions, our work provides extensive and highly non-trivial tests of the recently-derived uplift formulae.
We propose Swampland constraints on consistent 5-dimensional ${cal N}=1$ supergravity theories. We focus on a special class of BPS magnetic monopole strings which arise in gravitational theories. The central charges and the levels of current algebras of 2d CFTs on these strings can be calculated by anomaly inflow mechanism and used to provide constraints on the low-energy particle spectrum and the effective action of the 5d supergravity based on unitarity of the worldsheet CFT. In M-theory, where these theories are realized by compactification on Calabi-Yau 3-folds, the special monopole strings arise from wrapped M5-branes on special (semi-ample) 4-cycles in the threefold. We identify various necessary geometric conditions for such cycles to lead to requisite BPS strings and translate these into constraints on the low-energy theories of gravity. These and other geometric conditions, some of which can be related to unitarity constraints on the monopole worldsheet, are additional candidates for Swampland constraints on 5-dimensional ${cal N}=1$ supergravity theories.
We obtain Yang-Mills $SU(2)times G$ gauged supergravity in three dimensions from $SU(2)$ group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of $G$. The reduced theory is consistently truncated to $N=4$ 3D supergravity coupled to $4(1+textrm{dim}, G)$ bosonic and $4(1+textrm{dim}, G)$ fermionic propagating degrees of freedom. This is in contrast to the reduction in which there are also massive vector fields. The scalar manifold is $mathbf{R}times frac{SO(3,, textrm{dim}, G)}{SO(3)times SO(textrm{dim}, G)}$, and there is a $SU(2)times G$ gauge group. We then construct $N=4$ Chern-Simons $(SO(3)ltimes mathbf{R}^3)times (Gltimes mathbf{R}^{textrm{dim}G})$ three dimensional gauged supergravity with scalar manifold $frac{SO(4,,1+textrm{dim}G)}{SO(4)times SO(1+textrm{dim}G)}$ and explicitly show that this theory is on-shell equivalent to the Yang-Mills $SO(3)times G$ gauged supergravity theory obtained from the $SU(2)$ reduction, after integrating out the scalars and gauge fields corresponding to the translational symmetries $mathbf{R}^3times mathbf{R}^{textrm{dim}, G}$.
We study the supersymmetry breaking patterns in four-dimensional $mathcal{N}=2$ gauged supergravity. The model contains multiple (Abelian) vector multiplets and a single hypermultiplet which parametrizes SO$(4,1)/{rm{SO}}(4)$ coset. We derive the expressions of two gravitino masses under {it{general}} gaugings and prepotential based on the embedding tensor formalism, and discuss their behaviors in some concrete models. Then we confirm that in a single vector multiplet case, the partial breaking always occurs when the third derivative of the prepotential exists at the vacuum, which is consistent with the result of Ref.~cite{Antoniadis:2018blk}, but we can have several breaking patterns otherwise. The discussion is also generalized to the case of multiple vector multiplets, and we found that the full ($mathcal{N}=0$) breaking occurs even if the third derivative of the prepotential is nontrivial.