No Arabic abstract
Previous works for PCB defect detection based on image difference and image processing techniques have already achieved promising performance. However, they sometimes fall short because of the unaccounted defect patterns or over-sensitivity about some hyper-parameters. In this work, we design a deep model that accurately detects PCB defects from an input pair of a detect-free template and a defective tested image. A novel group pyramid pooling module is proposed to efficiently extract features of a large range of resolutions, which are merged by group to predict PCB defect of corresponding scales. To train the deep model, a dataset is established, namely DeepPCB, which contains 1,500 image pairs with annotations including positions of 6 common types of PCB defects. Experiment results validate the effectiveness and efficiency of the proposed model by achieving $98.6%$ mAP @ 62 FPS on DeepPCB dataset. This dataset is now available at: https://github.com/tangsanli5201/DeepPCB.
The usage of electronic devices increases, and becomes predominant in most aspects of life. Surface Mount Technology (SMT) is the most common industrial method for manufacturing electric devices in which electrical components are mounted directly onto the surface of a Printed Circuit Board (PCB). Although the expansion of electronic devices affects our lives in a productive way, failures or defects in the manufacturing procedure of those devices might also be counterproductive and even harmful in some cases. It is therefore desired and sometimes crucial to ensure zero-defect quality in electronic devices and their production. While traditional Image Processing (IP) techniques are not sufficient to produce a complete solution, other promising methods like Deep Learning (DL) might also be challenging for PCB inspection, mainly because such methods require big adequate datasets which are missing, not available or not updated in the rapidly growing field of PCBs. Thus, PCB inspection is conventionally performed manually by human experts. Unsupervised Learning (UL) methods may potentially be suitable for PCB inspection, having learning capabilities on the one hand, while not relying on large datasets on the other. In this paper, we introduce ChangeChip, an automated and integrated change detection system for defect detection in PCBs, from soldering defects to missing or misaligned electronic elements, based on Computer Vision (CV) and UL. We achieve good quality defect detection by applying an unsupervised change detection between images of a golden PCB (reference) and the inspected PCB under various setting. In this work, we also present CD-PCB, a synthesized labeled dataset of 20 pairs of PCB images for evaluation of defect detection algorithms.
This paper presents a challenging computer vision task, namely the detection of generic components on a PCB, and a novel set of deep-learning methods that are able to jointly leverage the appearance of individual components and the propagation of information across the structure of the board to accurately detect and identify various types of components on a PCB. Due to the expense of manual data labeling, a highly unbalanced distribution of component types, and significant domain shift across boards, most earlier attempts based on traditional image processing techniques fail to generalize well to PCB images with various quality, lighting conditions, etc. Newer object detection pipelines such as Faster R-CNN, on the other hand, require a large amount of labeled data, do not deal with domain shift, and do not leverage structure. To address these issues, we propose a three stage pipeline in which a class-agnostic region proposal network is followed by a low-shot similarity prediction classifier. In order to exploit the data dependency within a PCB, we design a novel Graph Network block to refine the component features conditioned on each PCB. To the best of our knowledge, this is one of the earliest attempts to train a deep learning based model for such tasks, and we demonstrate improvements over recent graph networks for this task. We also provide in-depth analysis and discussion for this challenging task, pointing to future research.
For one PCB trace region, where bare high voltage trace goes near GND pad, we estimated an electrical breakdown voltage in low vacuum using simplified geometrical model under some assumptions. Experimental measurement of Paschen curve for the PCB board considered was proceed in pressure range from 2x10-3 mbar to 25 mbar.
Automated defect inspection is critical for effective and efficient maintenance, repair, and operations in advanced manufacturing. On the other hand, automated defect inspection is often constrained by the lack of defect samples, especially when we adopt deep neural networks for this task. This paper presents Defect-GAN, an automated defect synthesis network that generates realistic and diverse defect samples for training accurate and robust defect inspection networks. Defect-GAN learns through defacement and restoration processes, where the defacement generates defects on normal surface images while the restoration removes defects to generate normal images. It employs a novel compositional layer-based architecture for generating realistic defects within various image backgrounds with different textures and appearances. It can also mimic the stochastic variations of defects and offer flexible control over the locations and categories of the generated defects within the image background. Extensive experiments show that Defect-GAN is capable of synthesizing various defects with superior diversity and fidelity. In addition, the synthesized defect samples demonstrate their effectiveness in training better defect inspection networks.
Perhaps surprisingly sewerage infrastructure is one of the most costly infrastructures in modern society. Sewer pipes are manually inspected to determine whether the pipes are defective. However, this process is limited by the number of qualified inspectors and the time it takes to inspect a pipe. Automatization of this process is therefore of high interest. So far, the success of computer vision approaches for sewer defect classification has been limited when compared to the success in other fields mainly due to the lack of public datasets. To this end, in this work we present a large novel and publicly available multi-label classification dataset for image-based sewer defect classification called Sewer-ML. The Sewer-ML dataset consists of 1.3 million images annotated by professional sewer inspectors from three different utility companies across nine years. Together with the dataset, we also present a benchmark algorithm and a novel metric for assessing performance. The benchmark algorithm is a result of evaluating 12 state-of-the-art algorithms, six from the sewer defect classification domain and six from the multi-label classification domain, and combining the best performing algorithms. The novel metric is a class-importance weighted F2 score, $text{F}2_{text{CIW}}$, reflecting the economic impact of each class, used together with the normal pipe F1 score, $text{F}1_{text{Normal}}$. The benchmark algorithm achieves an $text{F}2_{text{CIW}}$ score of 55.11% and $text{F}1_{text{Normal}}$ score of 90.94%, leaving ample room for improvement on the Sewer-ML dataset. The code, models, and dataset are available at the project page https://vap.aau.dk/sewer-ml/