No Arabic abstract
Perhaps surprisingly sewerage infrastructure is one of the most costly infrastructures in modern society. Sewer pipes are manually inspected to determine whether the pipes are defective. However, this process is limited by the number of qualified inspectors and the time it takes to inspect a pipe. Automatization of this process is therefore of high interest. So far, the success of computer vision approaches for sewer defect classification has been limited when compared to the success in other fields mainly due to the lack of public datasets. To this end, in this work we present a large novel and publicly available multi-label classification dataset for image-based sewer defect classification called Sewer-ML. The Sewer-ML dataset consists of 1.3 million images annotated by professional sewer inspectors from three different utility companies across nine years. Together with the dataset, we also present a benchmark algorithm and a novel metric for assessing performance. The benchmark algorithm is a result of evaluating 12 state-of-the-art algorithms, six from the sewer defect classification domain and six from the multi-label classification domain, and combining the best performing algorithms. The novel metric is a class-importance weighted F2 score, $text{F}2_{text{CIW}}$, reflecting the economic impact of each class, used together with the normal pipe F1 score, $text{F}1_{text{Normal}}$. The benchmark algorithm achieves an $text{F}2_{text{CIW}}$ score of 55.11% and $text{F}1_{text{Normal}}$ score of 90.94%, leaving ample room for improvement on the Sewer-ML dataset. The code, models, and dataset are available at the project page https://vap.aau.dk/sewer-ml/
Images or videos always contain multiple objects or actions. Multi-label recognition has been witnessed to achieve pretty performance attribute to the rapid development of deep learning technologies. Recently, graph convolution network (GCN) is leveraged to boost the performance of multi-label recognition. However, what is the best way for label correlation modeling and how feature learning can be improved with label system awareness are still unclear. In this paper, we propose a label graph superimposing framework to improve the conventional GCN+CNN framework developed for multi-label recognition in the following two aspects. Firstly, we model the label correlations by superimposing label graph built from statistical co-occurrence information into the graph constructed from knowledge priors of labels, and then multi-layer graph convolutions are applied on the final superimposed graph for label embedding abstraction. Secondly, we propose to leverage embedding of the whole label system for better representation learning. In detail, lateral connections between GCN and CNN are added at shallow, middle and deep layers to inject information of label system into backbone CNN for label-awareness in the feature learning process. Extensive experiments are carried out on MS-COCO and Charades datasets, showing that our proposed solution can greatly improve the recognition performance and achieves new state-of-the-art recognition performance.
Multi-label classification tasks such as OCR and multi-object recognition are a major focus of the growing machine learning as a service industry. While many multi-label prediction APIs are available, it is challenging for users to decide which API to use for their own data and budget, due to the heterogeneity in those APIs price and performance. Recent work shows how to select from single-label prediction APIs. However the computation complexity of the previous approach is exponential in the number of labels and hence is not suitable for settings like OCR. In this work, we propose FrugalMCT, a principled framework that adaptively selects the APIs to use for different data in an online fashion while respecting users budget. The API selection problem is cast as an integer linear program, which we show has a special structure that we leverage to develop an efficient online API selector with strong performance guarantees. We conduct systematic experiments using ML APIs from Google, Microsoft, Amazon, IBM, Tencent and other providers for tasks including multi-label image classification, scene text recognition and named entity recognition. Across diverse tasks, FrugalMCT can achieve over 90% cost reduction while matching the accuracy of the best single API, or up to 8% better accuracy while matching the best APIs cost.
Deep learning techniques for point cloud data have demonstrated great potentials in solving classical problems in 3D computer vision such as 3D object classification and segmentation. Several recent 3D object classification methods have reported state-of-the-art performance on CAD model datasets such as ModelNet40 with high accuracy (~92%). Despite such impressive results, in this paper, we argue that object classification is still a challenging task when objects are framed with real-world settings. To prove this, we introduce ScanObjectNN, a new real-world point cloud object dataset based on scanned indoor scene data. From our comprehensive benchmark, we show that our dataset poses great challenges to existing point cloud classification techniques as objects from real-world scans are often cluttered with background and/or are partial due to occlusions. We identify three key open problems for point cloud object classification, and propose new point cloud classification neural networks that achieve state-of-the-art performance on classifying objects with cluttered background. Our dataset and code are publicly available in our project page https://hkust-vgd.github.io/scanobjectnn/.
Access to labeled reference data is one of the grand challenges in supervised machine learning endeavors. This is especially true for an automated analysis of remote sensing images on a global scale, which enables us to address global challenges such as urbanization and climate change using state-of-the-art machine learning techniques. To meet these pressing needs, especially in urban research, we provide open access to a valuable benchmark dataset named So2Sat LCZ42, which consists of local climate zone (LCZ) labels of about half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe. This dataset was labeled by 15 domain experts following a carefully designed labeling work flow and evaluation process over a period of six months. As rarely done in other labeled remote sensing dataset, we conducted rigorous quality assessment by domain experts. The dataset achieved an overall confidence of 85%. We believe this LCZ dataset is a first step towards an unbiased globallydistributed dataset for urban growth monitoring using machine learning methods, because LCZ provide a rather objective measure other than many other semantic land use and land cover classifications. It provides measures of the morphology, compactness, and height of urban areas, which are less dependent on human and culture. This dataset can be accessed from http://doi.org/10.14459/2018mp1483140.
In multi-label text classification, each textual document can be assigned with one or more labels. Due to this nature, the multi-label text classification task is often considered to be more challenging compared to the binary or multi-class text classification problems. As an important task with broad applications in biomedicine such as assigning diagnosis codes, a number of different computational methods (e.g. training and combining binary classifiers for each label) have been proposed in recent years. However, many suffered from modest accuracy and efficiency, with only limited success in practical use. We propose ML-Net, a novel deep learning framework, for multi-label classification of biomedical texts. As an end-to-end system, ML-Net combines a label prediction network with an automated label count prediction mechanism to output an optimal set of labels by leveraging both predicted confidence score of each label and the contextual information in the target document. We evaluate ML-Net on three independent, publicly-available corpora in two kinds of text genres: biomedical literature and clinical notes. For evaluation, example-based measures such as precision, recall and f-measure are used. ML-Net is compared with several competitive machine learning baseline models. Our benchmarking results show that ML-Net compares favorably to the state-of-the-art methods in multi-label classification of biomedical texts. ML-NET is also shown to be robust when evaluated on different text genres in biomedicine. Unlike traditional machine learning methods, ML-Net does not require human efforts in feature engineering and is highly efficient and scalable approach to tasks with a large set of labels (no need to build individual classifiers for each separate label). Finally, ML-NET is able to dynamically estimate the label count based on the document context in a more systematic and accurate manner.