Do you want to publish a course? Click here

Visual Orbits of Spectroscopic Binaries with the CHARA Array. I. HD 224355

126   0   0.0 ( 0 )
 Added by Kathryn Lester
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the visual orbit of the double-lined spectroscopic binary HD 224355 from interferometric observations with the CHARA Array, as well as an updated spectroscopic analysis using echelle spectra from the Apache Point Observatory 3.5m telescope. By combining the visual and spectroscopic orbital solutions, we find the binary components to have masses of M1 = 1.626 +/- 0.005 Msun and M2 = 1.608 +/- 0.005 Msun, and a distance of d = 63.98 +/- 0.26 pc. Using the distance and the component angular diameters found by fitting spectrophotometry from the literature to spectral energy distribution models, we estimate the stellar radii to be R1 = 2.65 +/- 0.21 Rsun and R2 = 2.47 +/- 0.23 Rsun. We then compare these observed fundamental parameters to the predictions of stellar evolution models, finding that both components are evolved towards the end of the main sequence with an estimated age of 1.9 Gyr.



rate research

Read More

We present the visual orbits of two long period spectroscopic binary stars, HD 8374 and HD 24546, using interferometric observations acquired with the CHARA Array and the Palomar Testbed Interferometer. We also obtained new radial velocities from echelle spectra using the APO 3.5 m and Fairborn 2.0 m telescopes. By combining the visual and spectroscopic observations, we solve for the full, three-dimensional orbits and determine the stellar masses and distances to within 3% uncertainty. We then estimate the effective temperature and radius of each component star through Doppler tomography and spectral energy distribution analyses, in order to compare the observed stellar parameters to the predictions of stellar evolution models. For HD 8374, we find masses of M1 = 1.636 +/- 0.050 Msun and M2 = 1.587 +/- 0.049 Msun, radii of R1 = 1.84 +/- 0.05 Rsun and R2 = 1.66 +/- 0.12 Rsun, temperatures of Teff1 = 7280 +/- 110 K and Teff2 = 7280 +/- 120 K, and an estimated age of 1.0 Gyr. For HD 24546, we find masses of M1 = 1.434 +/- 0.014 Msun and M2 = 1.409 +/- 0.014 Msun, radii of R1 = 1.67 +/- 0.06 Rsun and R2 = 1.60 +/- 0.10 Rsun, temperatures of Teff1 = 6790 +/- 120 K and Teff2 = 6770 +/- 90 K, and an estimated age of 1.4 Gyr. HD 24546 is therefore too old to be a member of the Hyades cluster, despite its physical proximity to the group.
We present the visual orbit of the double-lined eclipsing binary, HD 185912, from long baseline interferometry with the CHARA Array. We also obtain echelle spectra from the Apache Point observatory to update the spectroscopic orbital solution and analyze new photometry from Burggraaff et al. to model the eclipses. By combining the spectroscopic and visual orbital solutions, we find component masses of M1 = 1.361 +/- 0.004 Msun and M2 = 1.331 +/- 0.004 Msun, and a distance of d = 40.75 +/- 0.30 pc from orbital parallax. From the light curve solution, we find component radii of R1 = 1.348 +/- 0.016 Rsun and R2 = 1.322 +/- 0.016 Rsun. By comparing these observed parameters to stellar evolution models, we find that HD 185912 is a young system near the zero age main sequence with an estimated age of 500 Myr.
We present the spectroscopic orbits of eleven nearby, mid-to-late M dwarf binary systems in a variety of configurations: two single-lined binaries (SB1s), seven double-lined binaries (SB2s), one double-lined triple (ST2), and one triple-lined triple (ST3). Eight of these orbits are the first published for these systems, while five are newly identified multiples. We obtained multi-epoch, high-resolution spectra with the TRES instrument on the 1.5m Tillinghast Reflector at the Fred Lawrence Whipple Observatory located on Mt. Hopkins in AZ. Using the TiO molecular bands at 7065 -- 7165 Angstroms, we calculated radial velocities for these systems, from which we derived their orbits. We find LHS 1817 to have in a 7-hour period a companion that is likely a white dwarf, due to the ellipsoidal modulation we see in our MEarth-North light curve data. We find G 123-45 and LTT 11586 to host companions with minimum masses of 41 M_Jup and 44 M_Jup with orbital periods of 35 and 15 days, respectively. We find 2MA 0930+0227 to have a rapidly rotating stellar companion in a 917-day orbital period. GJ 268, GJ 1029, LP 734-34, GJ 1182, G 258-17, and LTT 7077 are SB2s with stellar companions with orbital periods of 10, 96, 34, 154, 5, and 84 days; LP 655-43 is an ST3 with one companion in an 18-day orbital period and an outer component in a longer undetermined period. In addition, we present radial velocities for both components of L 870-44AB and for the outer components of LTT 11586 and LP 655-43.
We measured the angular diameter of the lithium-rich K giant star HD 148293 using Georgia State Universitys Center for High Angular Resolution Astronomy (CHARA) Array interferometer. We used our measurement to calculate the stars effective temperature, which allowed us to place it on an H-R diagram to compare it with other Li-rich giants. Its placement supports the evidence presented by Charbonnel & Balachandran that it is undergoing a brief stage in its evolution where Li is being created.
112 - Pawel Zielinski 2012
We propose to measure the radii of the Penn State - Torun Planet Search (PTPS) exoplanet host star candidates using the CHARA Array. Stellar radii estimated from spectroscopic analysis are usually inaccurate due to indirect nature of the method and strong evolutionary model dependency. Also the so-called degeneracy of stellar evolutionary tracks due to convergence of many tracks in the giant branch decreases the precision of such estimates. However, the radius of a star is a critical parameter for the calculation of stellar luminosity and mass, which are often not well known especially for giants. With well determined effective temperature (from spectroscopy) and radius the luminosity may be calculated precisely. In turn also stellar mass may be estimated much more precisely. Therefore, direct radii measurements increase precision in the determination of planetary candidates masses and the surface temperatures of the planets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا