No Arabic abstract
We present the visual orbit of the double-lined eclipsing binary, HD 185912, from long baseline interferometry with the CHARA Array. We also obtain echelle spectra from the Apache Point observatory to update the spectroscopic orbital solution and analyze new photometry from Burggraaff et al. to model the eclipses. By combining the spectroscopic and visual orbital solutions, we find component masses of M1 = 1.361 +/- 0.004 Msun and M2 = 1.331 +/- 0.004 Msun, and a distance of d = 40.75 +/- 0.30 pc from orbital parallax. From the light curve solution, we find component radii of R1 = 1.348 +/- 0.016 Rsun and R2 = 1.322 +/- 0.016 Rsun. By comparing these observed parameters to stellar evolution models, we find that HD 185912 is a young system near the zero age main sequence with an estimated age of 500 Myr.
We present the visual orbit of the double-lined spectroscopic binary HD 224355 from interferometric observations with the CHARA Array, as well as an updated spectroscopic analysis using echelle spectra from the Apache Point Observatory 3.5m telescope. By combining the visual and spectroscopic orbital solutions, we find the binary components to have masses of M1 = 1.626 +/- 0.005 Msun and M2 = 1.608 +/- 0.005 Msun, and a distance of d = 63.98 +/- 0.26 pc. Using the distance and the component angular diameters found by fitting spectrophotometry from the literature to spectral energy distribution models, we estimate the stellar radii to be R1 = 2.65 +/- 0.21 Rsun and R2 = 2.47 +/- 0.23 Rsun. We then compare these observed fundamental parameters to the predictions of stellar evolution models, finding that both components are evolved towards the end of the main sequence with an estimated age of 1.9 Gyr.
We present the visual orbits of two long period spectroscopic binary stars, HD 8374 and HD 24546, using interferometric observations acquired with the CHARA Array and the Palomar Testbed Interferometer. We also obtained new radial velocities from echelle spectra using the APO 3.5 m and Fairborn 2.0 m telescopes. By combining the visual and spectroscopic observations, we solve for the full, three-dimensional orbits and determine the stellar masses and distances to within 3% uncertainty. We then estimate the effective temperature and radius of each component star through Doppler tomography and spectral energy distribution analyses, in order to compare the observed stellar parameters to the predictions of stellar evolution models. For HD 8374, we find masses of M1 = 1.636 +/- 0.050 Msun and M2 = 1.587 +/- 0.049 Msun, radii of R1 = 1.84 +/- 0.05 Rsun and R2 = 1.66 +/- 0.12 Rsun, temperatures of Teff1 = 7280 +/- 110 K and Teff2 = 7280 +/- 120 K, and an estimated age of 1.0 Gyr. For HD 24546, we find masses of M1 = 1.434 +/- 0.014 Msun and M2 = 1.409 +/- 0.014 Msun, radii of R1 = 1.67 +/- 0.06 Rsun and R2 = 1.60 +/- 0.10 Rsun, temperatures of Teff1 = 6790 +/- 120 K and Teff2 = 6770 +/- 90 K, and an estimated age of 1.4 Gyr. HD 24546 is therefore too old to be a member of the Hyades cluster, despite its physical proximity to the group.
V1022 Cas has been known as a spectroscopic binary for a century. It was found to be eclipsing based on photometry from the Hipparcos satellite, and an astrometric orbit was recently obtained from near-infrared interferometry. We present the first high-precision measurement of the radii of the stars based on light curves obtained by the TESS satellite. Combined with published radial velocities from high-resolution spectra, we measure the masses of the stars to be 1.626 +/- 0.001 Msun and 1.609 +/- 0.001 Msun, and the radii to be 2.591 +/- 0.026 Rsun and 2.472 +/- 0.027 Rsun. The 12.16-d orbit is eccentric and the stars rotate sub-synchronously, so the system is tidally unevolved. A good match to these masses and radii, and published temperatures of the stars, is found for several sets of theoretical stellar evolutionary models, for a solar metallicity and an age of approximately 2 Gyr. Four separate distance determinations to the system are available, and are in good agreement. The distances are based on surface brightness calibrations, theoretical bolometric corrections, the Gaia parallax, and the angular size of the astrometric orbit. A detailed spectroscopic analysis of the system to measure chemical abundances and more precise temperatures would be helpful.
Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle interferometry, and adaptive optics) to determine improved visual orbits for 20 binary stars. In some cases, radial velocity observations exist to constrain the full three-dimensional orbit and determine component masses. The visual orbit of one of these binaries---alpha Com (HD 114378)---shows that the system is likely to have eclipses, despite its very long period of 26 years. The next eclipse is predicted to be within a week of 2015 January 24.
We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity; in combination with new KMOS and archival SINFONI spectra, its primary component is found to undergo radial velocity variation with a period of 10.483+/-0.002 d and an amplitude of ~350 km/s. A secondary radial velocity curve is also marginally detectable. We reanalyse archival NAOS-CONICA photometric survey data in combination with our radial velocity results to confirm this object as an eclipsing SB2 system, and the first binary identified in the Arches. We model it as consisting of an 82+/-12 M_sun WN8-9h primary and a 60+/-8 M_sun O5-6 Ia+ secondary, and as having a slightly eccentric orbit, implying an evolutionary stage prior to strong binary interaction. As one of four X-ray bright Arches sources previously proposed as colliding-wind massive binaries, it may be only the first of several binaries to be discovered in this cluster, presenting potential challenges to recent models for the Arches age and composition. It also appears to be one of the most massive binaries detected to date; the primarys calculated initial mass of >~120 M_sun would arguably make this the most massive binary known in the Galaxy.