Do you want to publish a course? Click here

2D Semiconductor Nonlinear Plasmonic Modulators

99   0   0.0 ( 0 )
 Added by Matthew Klein
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A plasmonic modulator is a device that controls the amplitude or phase of propagating plasmons. In a pure plasmonic modulator, the presence or absence of a pump plasmonic wave controls the amplitude of a probe plasmonic wave through a channel. This control has to be mediated by an interaction between disparate plasmonic waves, typically requiring the integration of a nonlinear material. In this work, we demonstrate the first 2D semiconductor nonlinear plasmonic modulator based on a WSe2 monolayer integrated on top of a lithographically defined metallic waveguide. We utilize the strong coupling between the surface plasmon polaritons, SPPs, and excitons in the WSe2 to give a 73 percent change in transmission through the device. We demonstrate control of the propagating SPPs using both optical and SPP pumps, realizing the first demonstration of a 2D semiconductor nonlinear plasmonic modulator, with a modulation depth of 4.1 percent, and an ultralow switching energy estimated to be 40 aJ.



rate research

Read More

We introduce phase-change material Ge2Sb2Te5 (GST) into metal-insulator-metal (MIM) waveguide systems to realize chipscale plasmonic modulators and switches in the telecommunication band. Benefitting from the high contrast of optical properties between amorphous and crystalline GST, the three proposed structures can act as reconfigurable and non-volatile modulators and switches with excellent modulation depth 14 dB and fast response time in nanosecond, meanwhile possessing small footprints, simple frameworks and easy fabrication. This work provides new solutions to design active devices in MIM waveguide systems, and can find potential applications in more compact all-optical circuits for information processing and storage.
We present a micrometer scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed and optimized to directly generate a photovoltage and has an external responsivity~12.2V/W with a 3dB bandwidth~42GHz. We utilize Au split-gates with a$sim$100nm gap to electrostatically create a p-n-junction and simultaneously guide a surface plasmon polariton gap-mode. This increases light-graphene interaction and optical absorption and results in an increased electronic temperature and steeper temperature gradient across the GPD channel. This paves the way to compact, on-chip integrated, power-efficient graphene based photodetectors for receivers in tele and datacom modules
Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature in a novel metadevice based on gold/graphene Sierpinski carpet plasmonic fractals. We observed an unprecedented internal quantum efficiency up to 100% from the near-infrared to the visible range with an upper bound of optical detectivity of $10^{11}$ Jones and a gain up to $10^{6}$, which is a fingerprint of multiple hot carriers photogenerated in graphene. Also, we show a 100-fold enhanced photodetection due to highly focused (up to a record factor of $|E/E_{0}|approx20$ for graphene) electromagnetic fields induced by electrically tunable multimodal plasmons, spatially localized in self-similar fashion on the metasurface. Our findings give direct insight into the physical processes governing graphene plasmonic fractal metamaterials. The proposed structure represents a promising route for the realization of a broadband, compact, and active platform for future optoelectronic devices including multiband bio/chemical and light sensors.
The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with subwavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.
The authors recent Nature Photonics article titled Compact Nano-Mechanical Plasmonic Phase Modulators [1] is reviewed which reports a new phase modulation principle with experimental demonstration of a 23 {mu}m long non-resonant modulator having 1.5 {pi} rad range with 1.7 dB excess loss at 780 nm. Analysis showed that by decreasing all dimensions, a low loss, ultra-compact {pi} rad phase modulator is possible. Application of this type of nano-mechanical modulator in a miniature 2 x 2 switch is suggested and an optical design numerically validated. The footprint of the switch is 0.5 {mu}m x 2.5 {mu}m.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا