No Arabic abstract
Realizing axion insulator state with a uniform magnetization considerably facilitates experimental explorations of the intriguing topological magnetoelectric effect, a hallmark of three-dimensional (3D) topological insulators (TIs). Through density functional theory calculations and four-band model studies, we find that magnetic ions Cr3+ in monolayer CrI3 and Mn2+ in septuple-layer MnBi2Se4 have opposite exchange couplings to the topological surface states of 3D TI Bi2Se3. As an exciting result of such opposite exchange couplings, axion insulator state is realized by a uniform magnetization in CrI3/Bi2Se3/MnBi2Se4 heterostructure. Our work opens up opportunities for exploring topological magnetoelectric effect realized by the uniform magnetization induced axion insulator state in heterostructures of 3D TIs and two-dimensional van der Waals ferromagnetic insulators.
We propose to use ferromagnetic insulator MnBi2Se4/Bi2Se3/antiferromagnetic insulator Mn2Bi2Se5 heterostructures for the realization of the axion insulator state. Importantly, the axion insulator state in such heterostructures only depends on the magnetization of the ferromagnetic insulator and hence can be observed in a wide range of external magnetic field. Using density functional calculations and model Hamiltonian simulations, we find that the top and bottom surfaces have opposite half-quantum Hall conductance, with a sizable global spin gap of 5.1 meV opened for the topological surface states of Bi2Se3. Our work provides a new strategy for the search of axion insulators by using van der Waals antiferromagnetic insulators along with three-dimensional topological insulators.
We report a study of enhancing the magnetic ordering in a model magnetically doped topological insulator (TI), Bi2-xCrxSe3, via the proximity effect using a high-TC ferrimagnetic insulator Y3Fe5O12. The FMI provides the TI with a source of exchange interaction yet without removing the nontrivial surface state. By performing the elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally observed an enhanced TC of 50 K in this magnetically doped TI/FMI heterostructure. We have also found a larger (6.6 nm at 30 K) but faster decreasing (by 80% from 30 K to 50 K) penetration depth compared to that of diluted ferromagnetic semiconductors (DMSs), which could indicate a novel mechanism for the interaction between FMIs and the nontrivial TIs surface.
The intrinsic antiferromagnetic topological insulator MnBi2Te4 provides a versatile platform for exploring exotic topological phenomena. In this work, we report nonlocal transport studies of exfoliated MnBi2Te4 flakes in the axion insulator state. We observe pronounced nonlocal transport signals in six septuple-layer thick MnBi2Te4 devices within the axion insulator regime at low magnetic fields. As a magnetic field drives the axion insulator into the Chern insulator, the nonlocal resistance almost vanishes due to the dissipationless nature of the chiral edge state. Our nonlocal transport measurements provide strong evidence that the charge transport in the axion insulator state is carried by the half-quantized helical edge state that is proposed to appear at the hinges of the top and bottom surfaces.
Topological insulators (TIs) are predicted to be composed of an insulating bulk state along with conducting channels on the boundary of the material. In Bi2Se3, however, the Fermi level naturally resides in the conduction band due to intrinsic doping by selenium vacancies, leading to metallic bulk states. In such non-ideal TIs it is not well understood how the surface and bulk states behave under environmental disorder. In this letter, based on transport measurements of Bi2Se3 thin films, we show that the bulk states are sensitive to environmental disorder but the surface states remain robust.
The layered antiferromagnetic MnBi2Te4 films have been proposed to be an intrinsic quantum anomalous Hall (QAH) insulator with a large gap. To realize this proposal, it is crucial to open a magnetic gap of surface states. However, recent experiments have observed gapless surface states, indicating the absence of out-of-plane surface magnetism, and thus the quantized Hall resistance can only be achieved at the magnetic field above 6 T. In this work, we propose to induce out-of-plane surface magnetism of MnBi2Te4 films via the magnetic proximity with magnetic insulator CrI3. Our calculations have revealed a strong exchange bias ~ 40 meV, originating from the long Cr-eg orbital tails that hybridize strongly with Te p-orbitals. By stabilizing surface magnetism, the QAH effect can be realized in the MnBi2Te4/CrI3 heterostructure. Our calculations also demonstrate the high Chern number QAH state can be achieved by controlling external electric gates. Thus, the MnBi2Te4/CrI3 heterostructure provides a promising platform to realize the electrically tunable zero-field QAH effect.