Do you want to publish a course? Click here

Precursors of non-Markovianity

124   0   0.0 ( 0 )
 Added by Steve Campbell
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the paradigm of information backflow to characterize a non-Markovian evolution, we introduce so-called precursors of non-Markovianity, i.e. necessary properties that the system and environment state must exhibit at earlier times in order for an ensuing dynamics to be non-Markovian. In particular, we consider a quantitative framework to assess the role that established system-environment correlations together with changes in environmental states play in an emerging non-Markovian dynamics. By defining the relevant contributions in terms of the Bures distance, which is conveniently expressed by means of the quantum state fidelity, these quantities are well defined and easily applicable to a wide range of physical settings. We exemplify this by studying our precursors of non-Markovianity in discrete and continuous variable non-Markovian collision models.



rate research

Read More

We investigate the asymptotic dynamics of exact quantum Brownian motion. We find that non-Markovianity can persist in the long-time limit, and that in general the asymptotic behaviour depends strongly on the system-environment coupling and the spectral density of the bath.
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated to arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.
We establish a convex resource theory of non-Markovianity under the constraint of small time intervals within the temporal evolution. We construct the free operations, free states and a generalized bona-fide measure of non-Markovianity. The framework satisfies the basic properties of a consistent resource theory. The proposed resource quantifier is lower bounded by the optimization free Rivas-Huelga-Plenio (RHP) measure of nonMarkovianity. We further define the robustness of non-Markovianity and show that it can directly be expressed as a function of the RHP measure of non-Markovianity. This enables a physical interpretation of the RHP measure.
We have established a novel method to detect non-Markovian indivisible quantum channels using structural physical approximation. We have shown that this method can be used to detect eternal non -Markovian operations. We have further established that harnessing eternal non-Markovianity, we can device a protocol to detect quantum entanglement.
We study the dynamics of an open quantum system interacting with a non-thermal bath. Here, non-thermal means that the bath modes do not need to have the same temperature, but they have an effective temperature distribution. We find that, when a quantum system is interacting with such a non-thermal bath far from thermal equilibrium, it is no longer proper to use any coarse-grained Markovian description for the system, even when their coupling strength is quite weak. Especially, when there is coherent transition with strong interference strength in the quantum system, the Markovian master equation would bring in a serious problem of negative probability. After we consider some proper non-Markovian corrections, the problem can be naturally resolved.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا