Do you want to publish a course? Click here

Non-Markovianity of Gaussian Channels

121   0   0.0 ( 0 )
 Added by Fabrizio Illuminati
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated to arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.



rate research

Read More

We investigate the asymptotic dynamics of exact quantum Brownian motion. We find that non-Markovianity can persist in the long-time limit, and that in general the asymptotic behaviour depends strongly on the system-environment coupling and the spectral density of the bath.
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a recently introduced necessary and sufficient criterion and the ensuing measure of non-Markovianity based on the violation of the divisibility property of the dynamical map. We compare the paradigmatic instances of Quantum Brownian motion (QBM) and Pure Damping (PD) channels, and for the former we find that the exact dynamical evolution is always non-Markovian in the finite-time as well as in the asymptotic regimes, for any nonvanishing value of the non-Markovianity parameter. If one resorts to the rotating wave approximated (RWA) form of the QBM, that neglects the anomalous diffusion contribution to the system dynamics, we show that such approximation fails to detect the non-Markovian nature of the dynamics. Finally, for the exact dynamics of the QBM in the asymptotic regime, we show that the quantifiers of non-Markovianity based on the distinguishability between quantum states fail to detect the non-Markovian nature of the dynamics.
We study the continuous-variable (CV) quantum teleportation protocol in the case that one of the two modes of the shared entangled resource is sent to the receiver through a Gaussian Quantum Brownian Motion noisy channel. We show that if the channel is engineered in a non-Markovian regime, the information backflow from the environment induces an extra dependance of the phase of the two-mode squeezing of the shared Gaussian entangled resource on the transit time along the channel of the shared mode sent to the receiver. Optimizing over the non-Markovianity dependent phase of the squeezing yields a significant enhancement of the teleportation fidelity. For short enough channel transit times, essentially unit fidelity is achieved at realistic, finite values of the squeezing amplitude for a sufficiently large degree of the channel non-Markovianity.
Extendibility of bosonic Gaussian states is a key issue in continuous-variable quantum information. We show that a bosonic Gaussian state is $k$-extendible if and only if it has a Gaussian $k$-extension, and we derive a simple semidefinite program, whose size scales linearly with the number of local modes, to efficiently decide $k$-extendibility of any given bosonic Gaussian state. When the system to be extended comprises one mode only, we provide a closed-form solution. Implications of these results for the steerability of quantum states and for the extendibility of bosonic Gaussian channels are discussed. We then derive upper bounds on the distance of a $k$-extendible bosonic Gaussian state to the set of all separable states, in terms of trace norm and Renyi relative entropies. These bounds, which can be seen as Gaussian de Finetti theorems, exhibit a universal scaling in the total number of modes, independently of the mean energy of the state. Finally, we establish an upper bound on the entanglement of formation of Gaussian $k$-extendible states, which has no analogue in the finite-dimensional setting.
We introduce a geometric quantification of quantum coherence in single-mode Gaussian states and we investigate the behavior of distance measures as functions of different physical parameters. In the case of squeezed thermal states, we observe that re-quantization yields an effect of noise-enhanced quantum coherence for increasing thermal photon number.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا