We establish a convex resource theory of non-Markovianity under the constraint of small time intervals within the temporal evolution. We construct the free operations, free states and a generalized bona-fide measure of non-Markovianity. The framework satisfies the basic properties of a consistent resource theory. The proposed resource quantifier is lower bounded by the optimization free Rivas-Huelga-Plenio (RHP) measure of nonMarkovianity. We further define the robustness of non-Markovianity and show that it can directly be expressed as a function of the RHP measure of non-Markovianity. This enables a physical interpretation of the RHP measure.
We develop a theory of linear witnesses for detecting non-Markovianity, based on the geometric structure of the set of Choi states for all Markovian evolutions having Lindblad type generators. We show that the set of all such Markovian Choi states form a convex and compact set under the small time interval approximation. Invoking geometric Hahn-Banach theorem, we construct linear witnesses to separate a given non-Markovian Choi state from the set of Markovian Choi states. We present examples of such witnesses for dephasing channel and Pauli channel in case of qubits. We further investigate the geometric structure of the Markovian Choi states to find that they do not form a polytope. This presents a platform to consider non-linear improvement of non-Markovianity witnesses.
We establish a connection between non-Markovianity and negative entropy production rate for various classes of quantum operations. We analyse several aspects of unital and thermal operations in connection with resource theories of purity and thermodynamics. We fully characterize Lindblad operators corresponding to unital operations. We also characterize the Lindblad dynamics for a large class of thermal operations. We next generalize the definition of the entropy production rate for the non-equilibrium case to connect it with the rate of change of free energy of the system, and establish complementary relations between non-Markovianity and maximum loss of free energy. We naturally conclude that non-Markovianity in terms of divisibility breaking is a necessary resource for the backflow of other resources like purity or free energy under the corresponding allowed operations.
We investigate the conditions under which an uncontrollable background processes may be harnessed by an agent to perform a task that would otherwise be impossible within their operational framework. This situation can be understood from the perspective of resource theory: rather than harnessing useful quantum states to perform tasks, we propose a resource theory of quantum processes across multiple points in time. Uncontrollable background processes fulfil the role of resources, and a new set of objects called superprocesses, corresponding to operationally implementable control of the system undergoing the process, constitute the transformations between them. After formally introducing a framework for deriving resource theories of multi-time processes, we present a hierarchy of examples induced by restricting quantum or classical communication within the superprocess - corresponding to a client-server scenario. The resulting nine resource theories have different notions of quantum or classical memory as the determinant of their utility. Furthermore, one of these theories has a strict correspondence between non-useful processes and those that are Markovian and, therefore, could be said to be a true quantum resource theory of non-Markovianity.
To quantify non-Markovianity of tripartite quantum states from an operational viewpoint, we introduce a class $Omega^*$ of operations performed by three distant parties. A tripartite quantum state is a free state under $Omega^*$ if and only if it is a quantum Markov chain. We introduce a function of tripartite quantum states that we call the non-Markovianity of formation, and prove that it is a faithful measure of non-Markovianity, which is continuous and monotonically nonincreasing under a subclass $Omega$ of $Omega^*$. We consider a task in which the three parties generate a non-Markov state from scratch by operations in $Omega$, assisted with quantum communication from the third party to the others, which does not belong to $Omega$. We prove that the minimum cost of quantum communication required therein is asymptotically equal to the regularized non-Markovianity of formation. Based on this result, we provide a direct operational meaning to a measure of bipartite entanglement called the c-squashed entanglement.
Using the paradigm of information backflow to characterize a non-Markovian evolution, we introduce so-called precursors of non-Markovianity, i.e. necessary properties that the system and environment state must exhibit at earlier times in order for an ensuing dynamics to be non-Markovian. In particular, we consider a quantitative framework to assess the role that established system-environment correlations together with changes in environmental states play in an emerging non-Markovian dynamics. By defining the relevant contributions in terms of the Bures distance, which is conveniently expressed by means of the quantum state fidelity, these quantities are well defined and easily applicable to a wide range of physical settings. We exemplify this by studying our precursors of non-Markovianity in discrete and continuous variable non-Markovian collision models.