Do you want to publish a course? Click here

Optomechanical resonator-enhanced atom interferometry

92   0   0.0 ( 0 )
 Added by Dennis Schlippert
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Matter-wave interferometry and spectroscopy of optomechanical resonators offer complementary advantages. Interferometry with cold atoms is employed for accurate and long-term stable measurements, yet it is challenged by its dynamic range and cyclic acquisition. Spectroscopy of optomechanical resonators features continuous signals with large dynamic range, however it is generally subject to drifts. In this work, we combine the advantages of both devices. Measuring the motion of a mirror and matter waves interferometrically with respect to a joint reference allows us to operate an atomic gravimeter in a seismically noisy environment otherwise inhibiting readout of its phase. Our method is applicable to a variety of quantum sensors and shows large potential for improvements of both elements by quantum engineering.



rate research

Read More

The frequency stability of lasers is limited by thermal noise in state-of-the-art frequency references. Further improvement requires operation at cryogenic temperature. In this context, we investigate a fiber-based ring resonator. Our system exhibits a first-order temperature-insensitive point around $3.55$ K, much lower than that of crystalline silicon. The observed low sensitivity with respect to vibrations ($<5cdot{10^{-11}},text{m}^{-1} text{s}^{2}$), temperature ($-22(1)cdot{10^{-9}},text{K}^{-2}$) and pressure changes ($4.2(2)cdot{10^{-11}},text{mbar}^{-2}$) makes our approach promising for future precision experiments.
The integration of optomechanics and optoelectronics in a single device opens new possibilities for developing information technologies and exploring fundamental phenomena. Gallium arsenide (GaAs) is a well-known material that can bridge the gap between the functionalities of optomechanical devices and optical gain media. Here, we experimentally demonstrate a high-frequency GaAs optomechanical resonator with a ring-type bullseye geometry that is unprecedented in this platform. We measured mechanical modes up to 3.4 GHz with quality factors of 4000 (at 77 K) and optomechanical coupling rates up to 39 kHz at telecom wavelengths. Moreover, we investigated the material symmetry break due to elastic anisotropy and its impact on the mechanical mode spectrum. Finally, we assessed the temperature dependence of the mechanical losses and demonstrated the efficiency and anisotropy resilience of the bullseye anchor loss suppression, indicating that lower temperature operation may allow mechanical quality factors over $10^4$. Such characteristics are valuable for active optomechanics, coherent microwave-to-optics conversion via piezo-mechanics and other implementations of high-frequency oscillators in III-V materials.
Efficient switching and routing of photons of different wavelengths is a requirement for realizing a quantum internet. Multimode optomechanical systems can solve this technological challenge and enable studies of fundamental science involving widely separated wavelengths that are inaccessible to single-mode optomechanical systems. To this end, we demonstrate interference between two optomechanically induced transparency processes in a diamond on-chip cavity. This system allows us to directly observe the dynamics of an optomechanical dark mode that interferes photons at different wavelengths via their mutual coupling to a common mechanical resonance. This dark mode does not transfer energy to the dissipative mechanical reservoir and is predicted to enable quantum information processing applications that are insensitive to mechanical decoherence. Control of the dark mode is also utilized to demonstrate all-optical, two-colour switching and interference with light separated by over 5 THz in frequency.
Quadrature squeezing of light is investigated in a hybrid atom-optomechanical system comprising a cloud of two-level atoms and a movable mirror mediated by a single-mode cavity field. When the system is at high temperatures with quadrature fluctuations of light much above the standard quantum limit (SQL), excitation counting on the collective atomic state can effectively reduce the light noise close to the SQL. When the system is at low temperatures, considerable squeezing of light below the SQL is found at steady state. The squeezing is enhanced by simply increasing the atom-light coupling strength with the laser power optimized close to the unstable regime, and further noise reduction is achieved by decreasing various losses in the system. The presence of atoms and excitation counting on the atoms lessen the limitation of thermal noise, and the squeezing can be achieved at environment temperature of the order K. The nonclassicality of the light, embodied by the negative distributions of the Wigner function, is also studied by making non-Gaussian measurements on the atoms. It is shown that with feasible parameters excitation counting on the atoms is effective in inducing strongly optical nonclassicality.
Using polarization-resolved transient reflection spectroscopy, we investigate the ultrafast modulation of light interacting with a metasurface consisting of coherently vibrating nanophotonic meta-atoms in the form of U-shaped split-ring resonators, that exhibit co-localized optical and mechanical resonances. With a two-dimensional square-lattice array of these resonators formed of gold on a glass substrate, we monitor the visible-pump-pulse induced gigahertz oscillations in intensity of reflected linearly-polarized infrared probe light pulses, modulated by the resonators effectively acting as miniature tuning forks. A multimodal vibrational response involving the opening and closing motion of the split rings is detected in this way. Numerical simulations of the associated transient deformations and strain fields elucidate the complex nanomechanical dynamics contributing to the ultrafast optical modulation, and point to the role of acousto-plasmonic interactions through the opening and closing motion of the SRR gaps as the dominant effect. Applications include ultrafast acoustooptic modulator design and sensing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا