Do you want to publish a course? Click here

Enhancing squeezing and nonclassicality of light in atom-optomechanical systems

93   0   0.0 ( 0 )
 Added by Guo Yanqiang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quadrature squeezing of light is investigated in a hybrid atom-optomechanical system comprising a cloud of two-level atoms and a movable mirror mediated by a single-mode cavity field. When the system is at high temperatures with quadrature fluctuations of light much above the standard quantum limit (SQL), excitation counting on the collective atomic state can effectively reduce the light noise close to the SQL. When the system is at low temperatures, considerable squeezing of light below the SQL is found at steady state. The squeezing is enhanced by simply increasing the atom-light coupling strength with the laser power optimized close to the unstable regime, and further noise reduction is achieved by decreasing various losses in the system. The presence of atoms and excitation counting on the atoms lessen the limitation of thermal noise, and the squeezing can be achieved at environment temperature of the order K. The nonclassicality of the light, embodied by the negative distributions of the Wigner function, is also studied by making non-Gaussian measurements on the atoms. It is shown that with feasible parameters excitation counting on the atoms is effective in inducing strongly optical nonclassicality.



rate research

Read More

Ponderomotive squeezing of the output light of an optical cavity has been recently observed in the MHz range in two different cavity optomechanical devices. Quadrature squeezing becomes particularly useful at lower spectral frequencies, for example in gravitational wave interferometers, despite being more sensitive to excess phase and frequency noise. Here we show a phase/frequency noise cancellation mechanism due to destructive interference which can facilitate the production of ponderomotive squeezing in the kHz range and we demonstrate it experimentally in an optomechanical system formed by a Fabry-P{e}rot cavity with a micro-mechanical mirror.
Optical waveguides in the form of glass fibers are the backbone of global telecommunication networks. In such optical fibers, the light is guided over long distances by continuous total internal reflection which occurs at the interface between the fiber core with a higher refractive index and the lower index cladding. Although this mechanism ensures that no light escapes from the waveguide, it gives rise to an evanescent field in the cladding. While this field is protected from interacting with the environment in standard optical fibers, it is routinely employed in air- or vacuum-clad fibers in order to efficiently couple light fields to optical components or emitters using, e.g., tapered optical fiber couplers. Remarkably, the strong confinement imposed by the latter can lead to significant coupling of the lights spin and orbital angular momentum. Taking advantage of this effect, we demonstrate the controlled directional spontaneous emission of light by quantum emitters into a sub-wavelength-diameter waveguide. The effect is investigated in a paradigmatic setting, comprising cesium atoms which are located in the vicinity of a vacuum-clad silica nanofiber. We experimentally observe an asymmetry higher than 10:1 in the emission rates into the counterpropagating fundamental guided modes of the nanofiber. Moreover, we demonstrate that this asymmetry can be tailored by state preparation and suitable excitation of the quantum emitters. We expect our results to have important implications for research in nanophotonics and quantum optics and for implementations of integrated optical signal processing in the classical as well as in the quantum regime.
Conditional dynamics due to continuous optical measurements has successfully been applied for state reconstruction and feedback cooling in optomechanical systems. In this article, we show that the same measurement techniques can be used to unravel nonclassicality in optomechanical limit cycles. In contrast to unconditional dynamics, our approach gives rise to nonclassical limit cycles even in the sideband-unresolved regime, where the cavity decay rate exceeds the mechanical frequency. We predict a significant reduction of the mechanical amplitude fluctuations for realistic experimental parameters.
119 - Kamal P Singh , Jan M Rost 2010
We investigate dynamics of atomic and molecular systems exposed to intense, shaped chaotic fields and a weak femtosecond laser pulse theoretically. As a prototype example, the photoionization of a hydrogen atom is considered in detail. The net photoionization undergoes an optimal enhancement when a broadband chaotic field is added to the weak laser pulse. The enhanced ionization is analyzed using time-resolved wavepacket evolution and the population dynamics of the atomic levels. We elucidate the enhancement produced by spectrally-shaped chaotic fields of two different classes, one with a tunable bandwidth and another with a narrow bandwidth centered at the first atomic transition. Motivated by the large bandwidth provided in the high harmonic generation, we also demonstrate the enhancement effect exploiting chaotic fields synthesized from discrete, phase randomized, odd-order and all-order high harmonics of the driving pulse. These findings are generic and can have applications to other atomic and simple molecular systems.
We propose a scheme for the generation of a robust stationary squeezed state of a mechanical resonator in a quadratically coupled optomechanical system, driven by a pulsed laser. The intracavity photon number presents periodic intense peaks suddenly stiffening the effective harmonic potential felt by the mechanical resonator. These optical spring kicks tend to squeeze the resonator position, and due to the interplay with fluctuation-dissipation processes one can generate a stationary state with more than 13 dB of squeezing even starting from moderately pre-cooled initial thermal states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا