Do you want to publish a course? Click here

Two-colour interferometry and switching through optomechanical dark mode excitation

138   0   0.0 ( 0 )
 Added by Matthew Mitchell
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Efficient switching and routing of photons of different wavelengths is a requirement for realizing a quantum internet. Multimode optomechanical systems can solve this technological challenge and enable studies of fundamental science involving widely separated wavelengths that are inaccessible to single-mode optomechanical systems. To this end, we demonstrate interference between two optomechanically induced transparency processes in a diamond on-chip cavity. This system allows us to directly observe the dynamics of an optomechanical dark mode that interferes photons at different wavelengths via their mutual coupling to a common mechanical resonance. This dark mode does not transfer energy to the dissipative mechanical reservoir and is predicted to enable quantum information processing applications that are insensitive to mechanical decoherence. Control of the dark mode is also utilized to demonstrate all-optical, two-colour switching and interference with light separated by over 5 THz in frequency.



rate research

Read More

Matter-wave interferometry and spectroscopy of optomechanical resonators offer complementary advantages. Interferometry with cold atoms is employed for accurate and long-term stable measurements, yet it is challenged by its dynamic range and cyclic acquisition. Spectroscopy of optomechanical resonators features continuous signals with large dynamic range, however it is generally subject to drifts. In this work, we combine the advantages of both devices. Measuring the motion of a mirror and matter waves interferometrically with respect to a joint reference allows us to operate an atomic gravimeter in a seismically noisy environment otherwise inhibiting readout of its phase. Our method is applicable to a variety of quantum sensors and shows large potential for improvements of both elements by quantum engineering.
Nanoscale photonic crystal cavity optomechanical devices enable detection of nanomechanical phenomena with a sensitivity sufficient to observe quantum effects. Here we present the design of a one-dimensional air-mode photonic crystal cavity patterned in a silicon nitride nanobeam, and show that it forms the basis for cavity optomechanical split-beam and paddle nanocavity devices useful for force detection and nonlinear quantum sensing. The air-mode of this device is advantageous for optomechanical coupling, while also having ultrahigh optical quality factor $Q_osim 10^6$ despite its proximity to the light-line and the relatively low refractive index of silicon nitride. Paddle nanocavities realized from this device have a quadratic coupling coefficient $g^{(2)}/2pi$~=~10~MHz/nm$^{2}$, and their performance within the context of quantum optomechanics experiments is analyzed.
We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.
We theoretically study a strongly-driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar those observed in $mathcal{PT}$-symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that: (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically-induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultra-long group delay. The time delay $tau$ can be optimized by regulating the optomechanical coupling strength through the control field and improved up to several orders of magnitude ($tausim2$ $mathrm{ms}$) compared to that of conventional optomechanical systems ($tausim1$ $mumathrm{s}$). The presence of mechanical gain makes the group delay more robust to environmental perturbations. Our proposal provides a powerful platform to control light transport using a $mathcal{PT}$-symmetric-like optomechanical system.
123 - G. Mazzarella 2012
We analyze phase interferometry realized with a bosonic Josephson junction made of trapped dilute and ultracold atoms. By using a suitable phase sensitivity indicator we study the zero temperature junction states useful to achieve sub shot-noise precisions. Sub shot-noise phase shift sensitivities can be reached even at finite temperature under a suitable choice of the junction state. We infer a scaling law in terms of the size system (that is, the number of particles) for the temperature at which the shot-noise limit is not overcome anymore
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا