Do you want to publish a course? Click here

Efficient Bayesian credible-region certification for quantum-state tomography

150   0   0.0 ( 0 )
 Added by Yong Siah Teo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Standard Bayesian credible-region theory for constructing an error region on the unique estimator of an unknown state in general quantum-state tomography to calculate its size and credibility relies on heavy Monte~Carlo sampling of the state space followed by sample rejection. This conventional method typically gives negligible yield for very small error regions originating from large datasets. We propose an operational reformulated theory to compute both size and credibility from region-average quantities that in principle convey information about behavior of these two properties as the credible-region changes. We next suggest the accelerated hit-and-run Monte~Carlo sampling, customized to the construction of Bayesian error-regions, to efficiently compute region-average quantities, and provide its complexity estimates for quantum states. Finally by understanding size as the region-average distance between two states in the region (measured for instance with either the Hilbert-Schmidt, trace-class or Bures distance), we derive approximation formulas to analytically estimate both distance-induced size and credibility under the pseudo-Bloch parametrization without resorting to any Monte~Carlo computation.



rate research

Read More

110 - C. Oh , Y. S. Teo , H. Jeong 2019
Computing size and credibility of Bayesian credible regions for certifying the reliability of any point estimator of an unknown parameter (such as a quantum state, channel, phase, emph{etc.}) relies on rejection sampling from the entire parameter space that is practically infeasible for large datasets. We reformulate the Bayesian credible-region theory to show that both properties can be obtained solely from the average of log-likelihood over the region itself, which is computable with direct region sampling. Neither rejection sampling nor any geometrical knowledge about the whole parameter space is necessary, so that general error certification now becomes feasible. We take this region-average theory to the next level by generalizing size to the average $l_p$-norm distance $(p>0)$ between a random region point and the estimator, and present analytical formulas for $p=2$ to estimate distance-induced size and credibility for any physical system and large datasets, thus implying that asymptotic Bayesian error certification is possible without any Monte~Carlo computation. All results are discussed in the context of quantum-state tomography.
The exponential growth in Hilbert space with increasing size of a quantum system means that accurately characterising the system becomes significantly harder with system dimension d. We show that self-guided tomography is a practical, efficient, and robust technique of measuring higher-dimensional quantum states. The achieved fidelities are over 99.9% for qutrits (d=3) and ququints (d=5), and 99.1% for quvigints (d=20), the highest values ever realised for qudits. We demonstrate robustness against experimental sources of noise, both statistical and environmental. The technique is applicable to any higher-dimensional system, from a collection of qubits through to individual qudits, and any physical realisation, be it photonic, superconducting, ionic, or spin.
Bayesian inference is a powerful paradigm for quantum state tomography, treating uncertainty in meaningful and informative ways. Yet the numerical challenges associated with sampling from complex probability distributions hampers Bayesian tomography in practical settings. In this Article, we introduce an improved, self-contained approach for Bayesian quantum state estimation. Leveraging advances in machine learning and statistics, our formulation relies on highly efficient preconditioned Crank--Nicolson sampling and a pseudo-likelihood. We theoretically analyze the computational cost, and provide explicit examples of inference for both actual and simulated datasets, illustrating improved performance with respect to existing approaches.
132 - Kevin Schultz 2017
A Bayesian approach to quantum process tomography has yet to be fully developed due to the lack of appropriate probability distributions on the space of quantum channels. Here, by associating the Choi matrix form of a completely positive, trace preserving (CPTP) map with a particular space of matrices with orthonormal columns, called a Stiefel manifold, we present two parametric probability distributions on the space of CPTP maps that enable Bayesian analysis of process tomography. The first is a probability distribution that has an average Choi matrix as a sufficient statistic. The second is a distribution resulting from binomial likelihood data that enables a simple connection to data gathered through process tomography experiments. To our knowledge these are the first examples of continuous, non-unitary random CPTP maps, that capture meaningful prior information for use in Bayesian estimation. We show how these distributions can be used for point estimation using either maximum a posteriori estimates or expected a posteriori estimates, as well as full Bayesian tomography resulting in posterior credibility intervals. This approach will enable the full power of Bayesian analysis in all forms of quantum characterization, verification, and validation.
Quantum state tomography is a key process in most quantum experiments. In this work, we employ quantum machine learning for state tomography. Given an unknown quantum state, it can be learned by maximizing the fidelity between the output of a variational quantum circuit and this state. The number of parameters of the variational quantum circuit grows linearly with the number of qubits and the circuit depth, so that only polynomial measurements are required, even for highly-entangled states. After that, a subsequent classical circuit simulator is used to transform the information of the target quantum state from the variational quantum circuit into a familiar format. We demonstrate our method by performing numerical simulations for the tomography of the ground state of a one-dimensional quantum spin chain, using a variational quantum circuit simulator. Our method is suitable for near-term quantum computing platforms, and could be used for relatively large-scale quantum state tomography for experimentally relevant quantum states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا