No Arabic abstract
A model-based optimal experiment design (OED) of nonlinear systems is studied. OED represents a methodology for optimizing the geometry of the parametric joint-confidence regions (CRs), which are obtained in an a posteriori analysis of the least-squares parameter estimates. The optimal design is achieved by using the available (experimental) degrees of freedom such that more informative measurements are obtained. Unlike the commonly used approaches, which base the OED procedure upon the linearized CRs, we explore a path where we explicitly consider the exact CRs in the OED framework. We use a methodology for a finite parametrization of the exact CRs within the OED problem and we introduce a novel approximation technique of the exact CRs using inner- and outer-approximating ellipsoids as a computationally less demanding alternative. The employed techniques give the OED problem as a finite-dimensional mathematical program of bilevel nature. We use two small-scale illustrative case studies to study various OED criteria and compare the resulting optimal designs with the commonly used linearization-based approach. We also assess the performance of two simple heuristic numerical schemes for bilevel optimization within the studied problems.
The integration of renewables into electrical grids calls for the development of tailored control schemes which in turn require reliable grid models. In many cases, the grid topology is known but the actual parameters are not exactly known. This paper proposes a new approach for online parameter estimation in power systems based on optimal experimental design using multiple measurement snapshots. In contrast to conventional methods, our method computes optimal excitations extracting the maximum information in each estimation step to accelerate convergence. The performance of the proposed method is illustrated on a case study.
We consider the problem of asymptotic reconstruction of the state and parameter values in systems of ordinary differential equations. A solution to this problem is proposed for a class of systems of which the unknowns are allowed to be nonlinearly parameterized functions of state and time. Reconstruction of state and parameter values is based on the concepts of weakly attracting sets and non-uniform convergence and is subjected to persistency of excitation conditions. In absence of nonlinear parametrization the resulting observers reduce to standard estimation schemes. In this respect, the proposed method constitutes a generalization of the conventional canonical adaptive observer design.
We propose a framework for integrating optimal power flow (OPF) with state estimation (SE) in the loop for distribution networks. Our approach combines a primal-dual gradient-based OPF solver with a SE feedback loop based on a limited set of sensors for system monitoring, instead of assuming exact knowledge of all states. The estimation algorithm reduces uncertainty on unmeasured grid states based on a few appropriate online state measurements and noisy pseudo-measurements. We analyze the convergence of the proposed algorithm and quantify the statistical estimation errors based on a weighted least squares (WLS) estimator. The numerical results on a 4521-node network demonstrate that this approach can scale to extremely large networks and provide robustness to both large pseudo measurement variability and inherent sensor measurement noise.
This paper considers the optimal design of input signals for the purpose of discriminating among a finite number of affine models with uncontrolled inputs and noise. Each affine model represents a different system operating mode, corresponding to unobserved intents of other drivers or robots, or to fault types or attack strategies, etc. The input design problem aims to find optimal separating/discriminating (controlled) inputs such that the output trajectories of all the affine models are guaranteed to be distinguishable from each other, despite uncertainty in the initial condition and uncontrolled inputs as well as the presence of process and measurement noise. We propose a novel formulation to solve this problem, with an emphasis on guarantees for model discrimination and optimality, in contrast to a previously proposed conservative formulation using robust optimization. This new formulation can be recast as a bilevel optimization problem and further reformulated as a mixed-integer linear program (MILP). Moreover, our fairly general problem setting allows the incorporation of objectives and/or responsibilities among rational agents. For instance, each driver has to obey traffic rules, while simultaneously optimizing for safety, comfort and energy efficiency. Finally, we demonstrate the effectiveness of our approach for identifying the intention of other vehicles in several driving scenarios.
The integration of renewables into electrical grids calls for optimization-based control schemes requiring reliable grid models. Classically, parameter estimation and optimization-based control is often decoupled, which leads to high system operation cost in the estimation procedure. The present work proposes a method for simultaneously minimizing grid operation cost and optimally estimating line parameters based on methods for the optimal design of experiments. This method leads to a substantial reduction in cost for optimal estimation and in higher accuracy in the parameters compared with standard Optimal Power Flow and maximum-likelihood estimation. We illustrate the performance of the proposed method on a benchmark system.