Do you want to publish a course? Click here

Online power system parameter estimation and optimal operation

112   0   0.0 ( 0 )
 Added by Xu Du .
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The integration of renewables into electrical grids calls for optimization-based control schemes requiring reliable grid models. Classically, parameter estimation and optimization-based control is often decoupled, which leads to high system operation cost in the estimation procedure. The present work proposes a method for simultaneously minimizing grid operation cost and optimally estimating line parameters based on methods for the optimal design of experiments. This method leads to a substantial reduction in cost for optimal estimation and in higher accuracy in the parameters compared with standard Optimal Power Flow and maximum-likelihood estimation. We illustrate the performance of the proposed method on a benchmark system.



rate research

Read More

This paper proposes to use stochastic conic programming to address the challenge of large-scale wind power integration to the power system. Multiple wind farms are connected through the voltage source converter (VSC) based multi-terminal DC (VSC-MTDC) system to the power network supported by the Flexible AC Transmission System (FACTS). The optimal operation of the power network incorporating the VSC-MTDC system and FACTS devices is formulated in a stochastic conic programming framework accounting the uncertainties of the wind power generation. A methodology to generate representative scenarios of power generations from the wind farms is proposed using wind speed measurements and wind turbine models. The nonconvex transmission network constraints including the VSC-MTDC system and FACTS devices are convexified through the proposed second-order cone AC optimal power flow model (SOC-ACOPF) that can be solved to the global optimality using interior point method. In order to tackle the computational challenge due to the large number of wind power scenarios, a modified Benders decomposition algorithm (M-BDA) accelerated by parallel computation is proposed. The energy dispatch of conventional power generators is formulated as the master problem of M-BDA. Numerical results for up to 50000 wind power scenarios show that the proposed M-BDA approach to solve stochastic SOC-ACOPF outperforms the traditional single-stage (without decomposition) solution approach in both convergence capability and computational efficiency. The feasibility performance of the proposed stochastic SOC-ACOPF model is also demonstrated.
The integration of renewables into electrical grids calls for the development of tailored control schemes which in turn require reliable grid models. In many cases, the grid topology is known but the actual parameters are not exactly known. This paper proposes a new approach for online parameter estimation in power systems based on optimal experimental design using multiple measurement snapshots. In contrast to conventional methods, our method computes optimal excitations extracting the maximum information in each estimation step to accelerate convergence. The performance of the proposed method is illustrated on a case study.
Power grid parameter estimation involves the estimation of unknown parameters, such as inertia and damping coefficients, using observed dynamics. In this work, we present a comparison of data-driven algorithms for the power grid parameter estimation problem. First, we propose a new algorithm to solve the parameter estimation problem based on the Sparse Identification of Nonlinear Dynamics (SINDy) approach, which uses linear regression to infer the parameters that best describe the observed data. We then compare its performance against two benchmark algorithms, namely, the unscented Kalman filter (UKF) approach and the physics-informed neural networks (PINN) approach. We perform extensive simulations on IEEE bus systems to examine the performance of the aforementioned algorithms. Our results show that the SINDy algorithm outperforms the PINN and UKF algorithms in being able to accurately estimate the power grid parameters over a wide range of system parameters (including high and low inertia systems). Moreover, it is extremely efficient computationally and so takes significantly less time than the PINN algorithm, thus making it suitable for real-time parameter estimation.
The development of advanced closed-loop irrigation systems requires accurate soil moisture information. In this work, we address the problem of soil moisture estimation for the agro-hydrological systems in a robust and reliable manner. A nonlinear state-space model is established based on the discretization of the Richards equation to describe the dynamics of agro-hydrological systems. We consider that model parameters are unknown and need to be estimated together with the states simultaneously. We propose a consensus-based estimation mechanism, which comprises two main parts: 1) a distributed extended Kalman filtering algorithm used to estimate several model parameters; and 2) a distributed moving horizon estimation algorithm used to estimate the state variables and one remaining model parameter. Extensive simulations are conducted, and comparisons with existing methods are made to demonstrate the effectiveness and superiority of the proposed approach. In particular, the proposed approach can provide accurate soil moisture estimate even when poor initial guesses of the parameters and the states are used, which can be challenging to be handled using existing algorithms.
This paper proposes a novel approach to estimate the steady-state angle stability limit (SSASL) by using the nonlinear power system dynamic model in the modal space. Through two linear changes of coordinates and a simplification introduced by the steady-state condition, the nonlinear power system dynamic model is transformed into a number of single-machine-like power systems whose power-angle curves can be derived and used for estimating the SSASL. The proposed approach estimates the SSASL of angles at all machines and all buses without the need for manually specifying the scenario, i.e. setting sink and source areas, and also without the need for solving multiple nonlinear power flows. Case studies on 9-bus and 39-bus power systems demonstrate that the proposed approach is always able to capture the aperiodic instability in an online environment, showing promising performance in the online monitoring of the steady-state angle stability over the traditional power flow-based analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا