Do you want to publish a course? Click here

Adaptive Observers and Parameter Estimation for a Class of Systems Nonlinear in the Parameters

190   0   0.0 ( 0 )
 Added by Ivan Yu. Tyukin
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

We consider the problem of asymptotic reconstruction of the state and parameter values in systems of ordinary differential equations. A solution to this problem is proposed for a class of systems of which the unknowns are allowed to be nonlinearly parameterized functions of state and time. Reconstruction of state and parameter values is based on the concepts of weakly attracting sets and non-uniform convergence and is subjected to persistency of excitation conditions. In absence of nonlinear parametrization the resulting observers reduce to standard estimation schemes. In this respect, the proposed method constitutes a generalization of the conventional canonical adaptive observer design.



rate research

Read More

This supplement illustrates application of adaptive observer design from (Tyukin et al, 2013) for systems which are not uniquely identifiable. It also provides an example of adaptive observer design for a magnetic bearings benchmark system (Lin, Knospe, 2000).
Dynamical systems, for instance in model predictive control, often contain unknown parameters, which must be determined during system operation. Online or on-the-fly parameter identification methods are therefore necessary. The challenge of online methods is that one must continuously estimate parameters as experimental data becomes available. The existing techniques in the context of time-dependent partial differential equations exclude the case where the system depends nonlinearly on the parameters.Based on a model reference adaptive system approach, we present an online parameter identification method for nonlinear infinite-dimensional evolutionary system.
We study the problem of designing interval-valued observers that simultaneously estimate the system state and learn an unknown dynamic model for partially unknown nonlinear systems with dynamic unknown inputs and bounded noise signals. Leveraging affine abstraction methods and the existence of nonlinear decomposition functions, as well as applying our previously developed data-driven function over-approximation/abstraction approach to over-estimate the unknown dynamic model, our proposed observer recursively computes the maximal and minimal elements of the estimate intervals that are proven to contain the true augmented states. Then, using observed output/measurement signals, the observer iteratively shrinks the intervals by eliminating estimates that are not compatible with the measurements. Finally, given new interval estimates, the observer updates the over-approximation of the unknown model dynamics. Moreover, we provide sufficient conditions for uniform boundedness of the sequence of estimate interval widths, i.e., stability of the designed observer, in the form of tractable (mixed-)integer programs with finitely countable feasible sets.
Atangana and Baleanu proposed a new fractional derivative with non-local and no-singular Mittag-Leffler kernel to solve some problems proposed by researchers in the field of fractional calculus. This new derivative is better to describe essential aspects of non-local dynamical systems. We present some results regarding Lyapunov stability theory, particularly the Lyapunov Direct Method for fractional-order systems modeled with Atangana-Baleanu derivatives and some significant inequalities that help to develop the theoretical analysis. As applications in control theory, some algorithms of state estimation are proposed for linear and nonlinear fractional-order systems.
This paper studies the extremum seeking control (ESC) problem for a class of constrained nonlinear systems. Specifically, we focus on a family of constraints allowing to reformulate the original nonlinear system in the so-called input-output normal form. To steer the system to optimize a performance function without knowing its explicit form, we propose a novel numerical optimization-based extremum seeking control (NOESC) design consisting of a constrained numerical optimization method and an inversion based feedforward controller. In particular, a projected gradient descent algorithm is exploited to produce the state sequence to optimize the performance function, whereas a suitable boundary value problem accommodates the finite-time state transition between each two consecutive points of the state sequence. Compared to available NOESC methods, the proposed approach i) can explicitly deal with output constraints; ii) the performance function can consider a direct dependence on the states of the internal dynamics; iii) the internal dynamics do not have to be necessarily stable. The effectiveness of the proposed ESC scheme is shown through extensive numerical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا