Do you want to publish a course? Click here

A Large-Scale Empirical Study on Industrial Fake Apps

66   0   0.0 ( 0 )
 Added by Sen Chen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

While there have been various studies towards Android apps and their development, there is limited discussion of the broader class of apps that fall in the fake area. Fake apps and their development are distinct from official apps and belong to the mobile underground industry. Due to the lack of knowledge of the mobile underground industry, fake apps, their ecosystem and nature still remain in mystery. To fill the blank, we conduct the first systematic and comprehensive empirical study on a large-scale set of fake apps. Over 150,000 samples related to the top 50 popular apps are collected for extensive measurement. In this paper, we present discoveries from three different perspectives, namely fake sample characteristics, quantitative study on fake samples and fake authors developing trend. Moreover, valuable domain knowledge, like fake apps naming tendency and fake developers evasive strategies, is then presented and confirmed with case studies, demonstrating a clear vision of fake apps and their ecosystem.



rate research

Read More

Third-party security apps are an integral part of the Android app ecosystem. Many users install them as an extra layer of protection for their devices. There are hundreds of such security apps, both free and paid in Google Play Store and some of them are downloaded millions of times. By installing security apps, the smartphone users place a significant amount of trust towards the security companies who developed these apps, because a fully functional mobile security app requires access to many smartphone resources such as the storage, text messages and email, browser history, and information about other installed applications. Often these resources contain highly sensitive personal information. As such, it is essential to understand the mobile security apps ecosystem to assess whether is it indeed beneficial to install them. To this end, in this paper, we present the first empirical study of Android security apps. We analyse 100 Android security apps from multiple aspects such as metadata, static analysis, and dynamic analysis and presents insights to their operations and behaviours. Our results show that 20% of the security apps we studied potentially resell the data they collect from smartphones to third parties; in some cases, even without the user consent. Also, our experiments show that around 50% of the security apps fail to identify malware installed on a smartphone.
Mobile health applications (mHealth apps for short) are being increasingly adopted in the healthcare sector, enabling stakeholders such as governments, health units, medics, and patients, to utilize health services in a pervasive manner. Despite having several known benefits, mHealth apps entail significant security and privacy challenges that can lead to data breaches with serious social, legal, and financial consequences. This research presents an empirical investigation about security awareness of end-users of mHealth apps that are available on major mobile platforms, including Android and iOS. We collaborated with two mHealth providers in Saudi Arabia to survey 101 end-users, investigating their security awareness about (i) existing and desired security features, (ii) security related issues, and (iii) methods to improve security knowledge. Findings indicate that majority of the end-users are aware of the existing security features provided by the apps (e.g., restricted app permissions); however, they desire usable security (e.g., biometric authentication) and are concerned about privacy of their health information (e.g., data anonymization). End-users suggested that protocols such as session timeout or Two-factor authentication (2FA) positively impact security but compromise usability of the app. Security-awareness via social media, peer guidance, or training from app providers can increase end-users trust in mHealth apps. This research investigates human-centric knowledge based on empirical evidence and provides a set of guidelines to develop secure and usable mHealth apps.
We study the temporal dynamics of potentially harmful apps (PHAs) on Android by leveraging 8.8M daily on-device detections collected among 11.7M customers of a popular mobile security product between 2019 and 2020. We show that the current security model of Android, which limits security products to run as regular apps and prevents them from automatically removing malicious apps opens a significant window of opportunity for attackers. Such apps warn users about the newly discovered threats, but users do not promptly act on this information, allowing PHAs to persist on their device for an average of 24 days after they are detected. We also find that while app markets remove PHAs after these become known, there is a significant delay between when PHAs are identified and when they are removed: PHAs persist on Google Play for 77 days on average and 34 days on third party marketplaces. Finally, we find evidence of PHAs migrating to other marketplaces after being removed on the original one. This paper provides an unprecedented view of the Android PHA landscape, showing that current defenses against PHAs on Android are not as effective as commonly thought, and identifying multiple research directions that the security community should pursue, from orchestrating more effective PHA takedowns to devising better alerts for mobile security products.
Modern browsers give access to several attributes that can be collected to form a browser fingerprint. Although browser fingerprints have primarily been studied as a web tracking tool, they can contribute to improve the current state of web security by augmenting web authentication mechanisms. In this paper, we investigate the adequacy of browser fingerprints for web authentication. We make the link between the digital fingerprints that distinguish browsers, and the biological fingerprints that distinguish Humans, to evaluate browser fingerprints according to properties inspired by biometric authentication factors. These properties include their distinctiveness, their stability through time, their collection time, their size, and the accuracy of a simple verification mechanism. We assess these properties on a large-scale dataset of 4,145,408 fingerprints composed of 216 attributes, and collected from 1,989,365 browsers. We show that, by time-partitioning our dataset, more than 81.3% of our fingerprints are shared by a single browser. Although browser fingerprints are known to evolve, an average of 91% of the attributes of our fingerprints stay identical between two observations, even when separated by nearly 6 months. About their performance, we show that our fingerprints weigh a dozen of kilobytes, and take a few seconds to collect. Finally, by processing a simple verification mechanism, we show that it achieves an equal error rate of 0.61%. We enrich our results with the analysis of the correlation between the attributes, and of their contribution to the evaluated properties. We conclude that our browser fingerprints carry the promise to strengthen web authentication mechanisms.
In recent years, on-policy reinforcement learning (RL) has been successfully applied to many different continuous control tasks. While RL algorithms are often conceptually simple, their state-of-the-art implementations take numerous low- and high-level design decisions that strongly affect the performance of the resulting agents. Those choices are usually not extensively discussed in the literature, leading to discrepancy between published descriptions of algorithms and their implementations. This makes it hard to attribute progress in RL and slows down overall progress [Engstrom20]. As a step towards filling that gap, we implement >50 such ``choices in a unified on-policy RL framework, allowing us to investigate their impact in a large-scale empirical study. We train over 250000 agents in five continuous control environments of different complexity and provide insights and practical recommendations for on-policy training of RL agents.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا