Do you want to publish a course? Click here

Singular perturbation of an elastic energy with a singular weight

84   0   0.0 ( 0 )
 Added by Ihsan Topaloglu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We study the singular perturbation of an elastic energy with a singular weight. The minimization of this energy results in a multi-scale pattern formation. We derive an energy scaling law in terms of the perturbation parameter and prove that, although one cannot expect periodicity of minimizers, the energy of a minimizer is uniformly distributed across the sample. Finally, following the approach developed by Alberti and M{u}ller in 2001 we prove that a sequence of minimizers of the perturbed energies converges to a Young measure supported on functions of slope $pm 1$ and of period depending on the location in the domain and the weights in the energy.



rate research

Read More

We study the weighted heat trace asymptotics of an operator of Laplace type with Dirichlet boundary conditions where the weight function exhibits radial blowup. We give formulas for the first few terms in the expansion in terms of geometrical data.
We consider a nonlinear Dirichlet problem driven by the $(p,q)$-Laplacian and with a reaction which is parametric and exhibits the combined effects of a singular term and of a superdiffusive one. We prove an existence and nonexistence result for positive solutions depending on the value of the parameter $lambda in overset{circ}{mathbb{R}}_+=(0,+infty)$.
We prove the existence of weak solutions to a system of two diffusion equations that are coupled by a pointwise volume constraint. The time evolution is given by gradient dynamics for a free energy functional. Our primary example is a model for the demixing of polymers, the corresponding energy is the one of Flory, Huggins and deGennes. Due to the non-locality in the equations, the dynamics considered here is qualitatively different from the one found in the formally related Cahn-Hilliard equations. Our angle of attack is from the theory of optimal mass transport, that is, we consider the evolution equations for the two components as two gradient flows in the Wasserstein distance with one joint energy functional that has the volume constraint built in. The main difference to our previous work arXiv:1712.06446 is the nonlinearity of the energy density in the gradient part, which becomes singular at the interface between pure and mixed phases.
Micro-Electro Mechanical Systems (MEMS) are defined as very small structures that combine electrical and mechanical components on a common substrate. Here, the electrostatic-elastic case is considered, where an elastic membrane is allowed to deflect above a ground plate under the action of an electric potential, whose strength is proportional to a parameter $lambda$. Such devices are commonly described by a parabolic partial differential equation that contains a singular nonlinear source term. The singularity in that term corresponds to the so-called touchdown phenomenon, where the membrane establishes contact with the ground plate. Touchdown is known to imply the non-existence of steady state solutions and blow-up of solutions in finite time. We study a recently proposed extension of that canonical model, where such singularities are avoided due to the introduction of a regularizing term involving a small regularization parameter $varepsilon$. Methods from dynamical systems and geometric singular perturbation theory, in particular the desingularization technique known as blow-up, allow for a precise description of steady-state solutions of the regularized model, as well as for a detailed resolution of the resulting bifurcation diagram. The interplay between the two main model parameters $varepsilon$ and $lambda$ is emphasized; in particular, the focus is on the singular limit as both parameters tend to zero.
We investigate the validity of a soliton dynamics behavior in the semi-relativistic limit for the nonlinear Schrodinger equation in $R^{N}, Nge 3$, in presence of a singular external potential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا