No Arabic abstract
Understanding the structure of loss landscape of deep neural networks (DNNs)is obviously important. In this work, we prove an embedding principle that the loss landscape of a DNN contains all the critical points of all the narrower DNNs. More precisely, we propose a critical embedding such that any critical point, e.g., local or global minima, of a narrower DNN can be embedded to a critical point/hyperplane of the target DNN with higher degeneracy and preserving the DNN output function. The embedding structure of critical points is independent of loss function and training data, showing a stark difference from other nonconvex problems such as protein-folding. Empirically, we find that a wide DNN is often attracted by highly-degenerate critical points that are embedded from narrow DNNs. The embedding principle provides an explanation for the general easy optimization of wide DNNs and unravels a potential implicit low-complexity regularization during the training. Overall, our work provides a skeleton for the study of loss landscape of DNNs and its implication, by which a more exact and comprehensive understanding can be anticipated in the near
The work Loss Landscape Sightseeing with Multi-Point Optimization (Skorokhodov and Burtsev, 2019) demonstrated that one can empirically find arbitrary 2D binary patterns inside loss surfaces of popular neural networks. In this paper we prove that: (i) this is a general property of deep universal approximators; and (ii) this property holds for arbitrary smooth patterns, for other dimensionalities, for every dataset, and any neural network that is sufficiently deep and wide. Our analysis predicts not only the existence of all such low-dimensional patterns, but also two other properties that were observed empirically: (i) that it is easy to find these patterns; and (ii) that they transfer to other data-sets (e.g. a test-set).
The theoretical analysis of deep neural networks (DNN) is arguably among the most challenging research directions in machine learning (ML) right now, as it requires from scientists to lay novel statistical learning foundations to explain their behaviour in practice. While some success has been achieved recently in this endeavour, the question on whether DNNs can be analyzed using the tools from other scientific fields outside the ML community has not received the attention it may well have deserved. In this paper, we explore the interplay between DNNs and game theory (GT), and show how one can benefit from the classic readily available results from the latter when analyzing the former. In particular, we consider the widely studied class of congestion games, and illustrate their intrinsic relatedness to both linear and non-linear DNNs and to the properties of their loss surface. Beyond retrieving the state-of-the-art results from the literature, we argue that our work provides a very promising novel tool for analyzing the DNNs and support this claim by proposing concrete open problems that can advance significantly our understanding of DNNs when solved.
In suitably initialized wide networks, small learning rates transform deep neural networks (DNNs) into neural tangent kernel (NTK) machines, whose training dynamics is well-approximated by a linear weight expansion of the network at initialization. Standard training, however, diverges from its linearization in ways that are poorly understood. We study the relationship between the training dynamics of nonlinear deep networks, the geometry of the loss landscape, and the time evolution of a data-dependent NTK. We do so through a large-scale phenomenological analysis of training, synthesizing diverse measures characterizing loss landscape geometry and NTK dynamics. In multiple neural architectures and datasets, we find these diverse measures evolve in a highly correlated manner, revealing a universal picture of the deep learning process. In this picture, deep network training exhibits a highly chaotic rapid initial transient that within 2 to 3 epochs determines the final linearly connected basin of low loss containing the end point of training. During this chaotic transient, the NTK changes rapidly, learning useful features from the training data that enables it to outperform the standard initial NTK by a factor of 3 in less than 3 to 4 epochs. After this rapid chaotic transient, the NTK changes at constant velocity, and its performance matches that of full network training in 15% to 45% of training time. Overall, our analysis reveals a striking correlation between a diverse set of metrics over training time, governed by a rapid chaotic to stable transition in the first few epochs, that together poses challenges and opportunities for the development of more accurate theories of deep learning.
We study how permutation symmetries in overparameterized multi-layer neural networks generate `symmetry-induced critical points. Assuming a network with $ L $ layers of minimal widths $ r_1^*, ldots, r_{L-1}^* $ reaches a zero-loss minimum at $ r_1^*! cdots r_{L-1}^*! $ isolated points that are permutations of one another, we show that adding one extra neuron to each layer is sufficient to connect all these previously discrete minima into a single manifold. For a two-layer overparameterized network of width $ r^*+ h =: m $ we explicitly describe the manifold of global minima: it consists of $ T(r^*, m) $ affine subspaces of dimension at least $ h $ that are connected to one another. For a network of width $m$, we identify the number $G(r,m)$ of affine subspaces containing only symmetry-induced critical points that are related to the critical points of a smaller network of width $r<r^*$. Via a combinatorial analysis, we derive closed-form formulas for $ T $ and $ G $ and show that the number of symmetry-induced critical subspaces dominates the number of affine subspaces forming the global minima manifold in the mildly overparameterized regime (small $ h $) and vice versa in the vastly overparameterized regime ($h gg r^*$). Our results provide new insights into the minimization of the non-convex loss function of overparameterized neural networks.
The evolution of a deep neural network trained by the gradient descent can be described by its neural tangent kernel (NTK) as introduced in [20], where it was proven that in the infinite width limit the NTK converges to an explicit limiting kernel and it stays constant during training. The NTK was also implicit in some other recent papers [6,13,14]. In the overparametrization regime, a fully-trained deep neural network is indeed equivalent to the kernel regression predictor using the limiting NTK. And the gradient descent achieves zero training loss for a deep overparameterized neural network. However, it was observed in [5] that there is a performance gap between the kernel regression using the limiting NTK and the deep neural networks. This performance gap is likely to originate from the change of the NTK along training due to the finite width effect. The change of the NTK along the training is central to describe the generalization features of deep neural networks. In the current paper, we study the dynamic of the NTK for finite width deep fully-connected neural networks. We derive an infinite hierarchy of ordinary differential equations, the neural tangent hierarchy (NTH) which captures the gradient descent dynamic of the deep neural network. Moreover, under certain conditions on the neural network width and the data set dimension, we prove that the truncated hierarchy of NTH approximates the dynamic of the NTK up to arbitrary precision. This description makes it possible to directly study the change of the NTK for deep neural networks, and sheds light on the observation that deep neural networks outperform kernel regressions using the corresponding limiting NTK.